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Abstract

This whitepaper provides an introduction to and overview of seL4. We explain what
seL4 is (and is not) and explore its defining features. We explain what makes seL4
uniquely qualified as the operating-system kernel of choice for security- and
safety-critical systems, and generally embedded and cyber-physical systems. In
particular, we explain seL4’s assurance story, its security- and safety-relevant features,
and its benchmark-setting performance. We also discuss typical usage scenarios,
including incremental cyber retrofit of legacy systems.

CCS Concepts

• Software and its engineering → Operating Systems
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systems
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fault-tolerant systems and networks
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Chapter 1

What Is seL4?

seL4 is an operating system microkernel
An operating system (OS) is the low-level system software that controls a
computer system’s resources and enforces security. Unlike application software,
the OS has exclusive access to a more privileged execution mode of the
processor (kernel mode) that gives it direct access to hardware. Applications
only ever execute in user mode and can only access hardware as permitted by
the OS.

An OS microkernel is a minimal core of an OS, reducing the code executing at
higher privilege to a minimum. seL4 is a member of the L4 family of microkernels
that goes back to the mid-1990s. (And no, seL4 has nothing to do with seLinux.)

seL4 is also a hypervisor
seL4 supports virtual machines that can run a fully fledged guest OS such as
Linux. Subject to seL4’s enforcement of communication channels, guests and
their applications can communicate with each other as well as with native
applications.

Learn more about what it means that seL4 is a microkernel and its use as a
hypervisor in Chapter 2. And learn about real-world deployment scenarios,
including approaches for retrofitting security into legacy systems in Chapter 7.

seL4 is proved correct
seL4 comes with a formal, mathematical, machine-checked proof of
implementation correctness, meaning the kernel is in a very strong sense “bug
free” with respect to its specification. In fact, seL4 is the world’s first OS kernel
with such a proof at the code level [Klein et al., 2009].

seL4 is provably secure
Besides implementation correctness, seL4 comes with further proofs of security
enforcement [Klein et al., 2014]. They say that in a correctly configured
seL4-based system, the kernel guarantees the classical security properties of
confidentiality, integrity and availability. More about these proofs in Chapter 3.

seL4 improves security with fine-grained access control through capabilities
Capabilities are access tokens which support very fine-grained control over
which entity can access a particular resource in a system. They support strong
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security according to the principle of least privilege (also called principle of least
authority, POLA). This is a core design principle of highly secure system, and is
impossible to achieve with the way access control happens in mainstream
systems such as Linux or Windows.

seL4 is still the world’s only OS that is both capability-based and formally verified,
and as such has a defensible claim of being the world’s most secure OS. More
about capabilities in Chapter 4.

seL4 ensures safety of time-critical systems
seL4 is the world’s only OS kernel (at least in the open literature) that has
undergone a complete and sound analysis of its worst-case execution time
(WCET) [Blackham et al., 2011, Sewell et al., 2017]. This means, if the kernel is
configured appropriately, all kernel operations are bounded in time, and the
bound is known. This is a prerequisite for building hard real-time systems, where
failure to react to an event within a strictly bounded time period is catastrophic.

seL4 is the world’s most advanced mixed-criticality OS
seL4 provides strong support for mixed criticality real-time systems (MCS),
where the timeliness of critical activities must be ensured even if they co-exist
with less trusted code executing on the same platform. seL4 achieves this with
a flexible model that retains good resource utilisation, unlike the more
established MCS OSes that use strict (and inflexible) time and space partitioning
[Lyons et al., 2018]. More on seL4’s real-time and MCS support in Chapter 5.

seL4 is the world’s fastest microkernel
Traditionally, systems are either (sort-of) secure, or they are fast. seL4 is unique
in that it is both. seL4 is designed to support a wide range of real-world use
cases, whether they are security- (or safety-)critical or not, and excellent
performance is a requirement. More on seL4’s performance in Chapter 6.

seL4 is pronounced “ess-e-ell-four”
The pronunciation “sell-four” is deprecated.

How to read this document

This document is meant to be approachable by a wide audience. However, for
completeness, we will add some deeper technical detail in places.

Such detail will be marked with a chilli, like the one on the left. If you see this
then you know you can safely skip the marked passage if you think the technical
description is too “spicy” for your taste, or if you are simply not interested in this
level of detail. Only other chillied passages will assume you have read it.

Technical section

Where the chilli appears in a section title, such as here, this indicates that the whole
section is fairly technical and can be skipped.
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Chapter 2

seL4 Is a Microkernel and a Hypervisor,
It Is Not an OS

2.1 Monolithic kernels vs microkernels

To understand the difference between a mainstream OS, such as Linux, and a
microkernel, such as seL4, let’s look at Figure 2.1.
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IPC, Threads, Virtual Memory
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Figure 2.1: Operating-system structure: Monolithic kernel (left) vs microkernel (right).

The left side presents a (fairly abstracted) view of the architecture of a system such
as Linux. The yellow part is the OS kernel, it offers services such as file storage and
networking to applications. All the code that implements those services executes in
the privileged mode of the hardware, also called kernel mode or supervisor mode – the
execution mode that has unfettered access and control of all resources in the system.
In contrast, applications run in unprivileged, or user mode, and do not have direct
access to many hardware resources, which must be accessed through the OS. The OS
is internally structured in a number of layers, where each layer provides abstractions
implemented by layers below.

The problem with privileged-mode code is that it is dangerous: If anything goes wrong
here, there’s nothing to stop the damage. In particular, if this code has a bug that can
be exploited by an attacker to run the attacker’s code in privileged mode (called a
privilege-escalation or arbitrary code-execution attack) then the attacker can do what
they want with the system. Such flaws are the root problem of the many system
compromises we experience in mainstream systems.
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Of course, software bugs are mostly a fact of life, and OSes are not different. For
example, the Linux kernel comprises of the order of 20 million lines of source code
(20MSLOC); we can estimate that it contains literally tens of thousands of bugs
[Biggs et al., 2018]. This is obviously a huge attack surface! This idea is captured by
saying that Linux has a large trusted computing base (TCB), which is defined as the
subset of the overall system that must be trusted to operate correctly for the system
to be secure.

The idea behind a microkernel design is to drastically reduce the TCB and thus the
attack surface. As schematically shown at the right of Figure 2.1, the kernel, i.e. the
part of the system executing in privileged mode, is much smaller. In a well-designed
microkernel, such as seL4, it is of the order of ten thousand lines of source code
(10 kSLOC). This is literally three orders of magnitude smaller than the Linux kernel,
and the attack surface shrinks accordingly (maybe more, as the density of bugs
probably grows more than linearly with code size).

Obviously, it is not possible to provide the same functionality, in terms of OS services,
in such a small code base. In fact, the microkernel provides almost no services: it is
just a thin wrapper around hardware, just enough to securely multiplex hardware
resources. What the microkernel mostly provides is isolation, sandboxes in which
programs can execute without interference from other programs. And, critically, it
provides a protected procedure call (PPC) mechanism, which is a form of
inter-process communication (IPC). For historical reasons the term IPC lives on, but I
recommend avoiding it as it leads to misconceptions that result in poor designs.

For a deeper explanation of what seL4 IPC is and is not, I recommend reading
my blog How to (and how not to) use seL4 IPC.

The PPC mechanism allows one program to securely call a function in a different
program, where the microkernel transports function inputs and outputs between the
programs and, importantly, enforces interfaces: the “remote” (contained in a different
sandbox) function can only be called at an exported entrypoint, and only by explicitly
authorised clients (who have been given the appropriate capability, see Chapter 4).

The microkernel system uses this approach to provide the services the monolithic OS
implements in the kernel. In the microkernel world, these services are just programs,
no different from applications, that run in their own sandboxes, and provide a PPC
interface for applications to call. Should a server be compromised, that compromise
is confined to the server, its sandbox protects the rest of the system. This is in stark
contrast to the monolithic case, where a compromise of an OS service compromises
the complete system.

This effect can be quantified: Our recent study shows that of the known Linux
compromises classified as critical, i.e. most severe, 29% would be fully eliminated by a
microkernel design, and another 55% would be mitigated enough to no longer qualify
as critical [Biggs et al., 2018].
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Figure 2.2: L4 microkernel family tree.

2.2 seL4 Is a microkernel, not an OS

seL4 is a microkernel, and designed for generality while minimising the TCB. It is a
member of the L4 microkernel family, which goes back to the mid-’90s; Figure 2.2
shows seL4’s provenance. It was developed by our group at UNSW/NICTA, these days
known as Trustworthy Systems (TS). At the time we had 15 years of experience in
developing high-performance microkernels, and a track-record of real-world
deployments: Our OKL4 Microkernel shipped on billions of Qualcomm cellular modem
chips, and our L4-embedded kernel from the mid-Noughties runs on the secure
enclave of all recent iOS devices (iPhones etc).

Being a microkernel, seL4 contains none of the usual OS services; such services are
provided by programs running in user mode. Besides the great advantages elaborated
above, there are downsides to the microkernel design: These components must come
from somewhere. Some can be ported from open-source OSes, such as FreeBSD or
Linux, or they can be written from scratch. But in any case, this is significant work.

To scale up we need the help of the community, and the seL4 Foundation is the key
mechanism for enabling the community to cooperate and develop or port such
services for seL4-based systems. The most important ones are device drivers,
network protocol stacks, and file systems. We have a fair number of these, but much
more is needed.

Even compared to other microkernels, seL4’s API is very low-level, with only the
minimum abstraction as required to securely manage the hardware. As such, building
systems on seL4 is particularly difficult. A good way to look at this is to think of seL4
as the “assembly language of operating systems”: very primitive.

No-one in their right mind would write a complex system, say a database or web
server, in assembly language, we use higher-level programming languages for that.
These simplify the task by providing higher-level constructs and abstractions, at the
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expense of losing some of the power the hardware provides. In almost all cases, that
is a winning trade-off.

Similarly, one should not try to build a complex system directly on seL4, but should
use a higher-level framework that provides more appropriate abstractions, at the
expense of introducing some policy and taming the power of seL4. Specifically, such a
framework should allows developers to focus on the code that implements the
services, ignore hardware complexities, and automate much of the system integration.

There are presently three main component frameworks for seL4, all open source: The
Microkit, CAmkES and Genode.

The seL4 Microkit reduces the complex seL4 API to literally a handful of simple
abstractions, designed around components called protection domains. It also provides
a software development kit (SDK) that makes it easy to build and integrate separately
compiled modules with a kernel binary to produce a bootable image. The Microkit’s
simplicity is achieved by requiring the system architecture to be static, meaning the
set of modules and their communications is defined at system configuration time – a
model that seems to match the requirements of most (if not all) embedded systems,
including complex cyberphysical systems such as cars and aircraft.

CAmkES, a predecessor of the Microkit, is also a component framework for a
statically-architected system. Its abstractions are higher level yet more complex than
those of the Microkit. It also lacks an SDK, resulting in a much more painful build
process that forces use of the kernel’s complex build system. CAmkES also
introduces significant overheads.

Genode is in many ways a more powerful and general framework, that supports
multiple microkernels and already comes with a wealth of services and device drivers,
especially for x86 platforms, and does not enforce a static system architecture. It is
arguably more convenient to work with than CAmkES, and is certainly the way to get a
complex system up quickly. However, Genode has drawbacks: 1. As it supports
multiple microkernels, not all as powerful as seL4, Genode is based on the least
common denominator. In particular, it cannot use all of seL4’s security and safety
features. 2. It has no assurance story. More on this in Section 3.2.

For these reasons, the Microkit is the recommended framework for building systems
on seL4, at least as long as the static architecture works. Section 3.2 presents it in
more detail.

2.3 seL4 is also a hypervisor

seL4 is a microkernel, but it is also a hypervisor: It is possible to run virtual machines
on seL4, and inside the virtual machine (VM) a mainstream OS, such as Linux.

This enables an alternative way of provisioning system services, by having a Linux VM
provide them. Such a setup is shown in Figure 2.3, which shows how some services
are borrowed from multiple Linux instances running as guest OSes in separate VMs.

In this example, we provide two system services: networking and storage. Networking
is provided by a native protocol stack running directly on seL4, lwIP or PicoTCP are

8

https://trustworthy.systems/projects/microkit/
https://trustworthy.systems/projects/OLD/camkes/
https://genode.org/


Application

Native
NW
Protocol
Stack

Native
Flash
Driver

Virtual Machine

Linux Guest

Linux
NIC
Driver

Virtual Machine

Linux Guest

Linux 
File
System

Figure 2.3: Using virtualisation to integrate native OS services with Linux-provided ser-
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frequently used stacks. Instead of porting a network driver, we borrow one from Linux,
by running a VM with a stripped-down Linux guest that has little more than the NIC
driver. The protocol stack communicates with Linux via an seL4-provided channel, and
the application similarly obtains network services by communicating with the protocol
stack. Note that in the setup shown in the figure, the application has no channel to the
NIC-driver VM, and thus cannot communicate with it directly, only via the NW stack;
this is enabled by seL4’s capability-based protection (see Chapter 4).

A similar setup is shown for the storage service; this time the file system is a Linux
one running in a VM, while the storage driver is native. Again, communication between
the components is limited to channels explicitly provided. In particular, the app cannot
talk to the storage driver (except through the file system), and the two Linux systems
cannot communicate with each other.

When used as a hypervisor, seL4 runs in the appropriate hypervisor mode (EL2
on Arm, Root Ring-0 on x86, HS on RISC-V), which is a higher privilege level than
the guest operating system. Just as when running as the OS kernel, it only does
the minimum work that has to be performed in the privileged (hypervisor) mode

VM1

Guest 
OS

Guest
Apps VMM1

Native
Apps

Native
Services

Hypervisor
Mode

Guest
Kernel
Mode

User
Mode

VM2

Guest 
OS

Guest
Apps VMM2

Figure 2.4: seL4 virtualisation support with usermode VMMs.
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and leaves everything else to user mode.

Specifically this means that seL4 performs world switches, meaning it switches
virtual machine state when a VM’s execution time is up, or VMs must be
switched for some other reason. It also catches virtualisation exceptions (“VM
exits” in Intel lingo) and forwards them to a user-level handler, called the virtual
machine monitor (VMM). The VMM is then responsible for performing any
emulation operations needed.

Each VM has its private copy of the VMM, isolated from the guest OS as well as
from other VMs, as shown in Figure 2.4. This means that the VMM cannot break
isolation, and is therefore not more trusted than the guest OS itself. In particular,
this means that there is no need to verify the VMM, as that would not add real
assurance as long as the guest OS, typically Linux, is not verified.

2.4 seL4 is not seLinux

Many people confuse seL4 with seLinux (probably because seL4 might be mistaken
as a shorthand for the 4th version of seLinux). Fact is that seL4 has nothing
whatsoever to do with seLinux, other than both being open source. They share no
code nor abstractions. seLinux is not a microkernel, it is a security policy framework
built into Linux. While in some ways more secure than standard Linux, seLinux suffers
from the same problem as standard Linux: a huge TCB, and correspondingly huge
attack surface. In other words, seLinux is an add-on to a fundamentally insecure
operating system and thus remains fundamentally insecure. In contrast, seL4
provides bullet-proof isolation from the ground up.

In short, seLinux is not suitable for truly security-critical uses, while seL4 is designed
for them.
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Chapter 3

seL4’s Verification Story

In 2009, seL4 became the world’s first OS kernel with a machine-checked functional
correctness proof at the source-code level. This proof was 200,000 lines of proof
script at the time, one of the largest ever (we think it was the second largest then). It
showed that a functionally correct OS kernel is possible, something that until then had
been considered infeasible.

Since then we have extended the scope of the verification to higher level properties,
Figure 3.1 shows the chain of proofs, which are explained below. Importantly, we
maintained the proof with the ongoing evolution of the kernel: Commits to the
mainline kernel source are only allowed if they do not break proofs, otherwise the
proofs are updated as well. This proof engineering is also a novelty. Our seL4 proofs
constitute by far the largest proof base that is actively maintained. The set of proofs
has by now grown to well over a million lines, most of this manually written and then
machine checked.

Proof P
ro

of

Pro
of

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

P
ro

of
P

ro
of

Figure 3.1: seL4’s proof chain.
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3.1 Correctness and security enforcement

Functional correctness

The core of seL4’s verification is the functional correctness proof, which says that the
C implementation is free of implementation defects. More precisely, there is a formal
specification of the kernel’s functionality, expressed in a mathematical language
called higher-order logic (HOL). This is represented by the box labelled abstract model
in the figure. The functional correctness proof then says that the C implementation is
a refinement of the abstract model, meaning the possible behaviours of the C code are
a subset of those allowed by the abstract model.

This informal description glosses over a lot of detail. Here is some of it in case
you wonder.

C is not a formal language; in order to allow reasoning about a C program in the
theorem prover (we use Isabelle/HOL), it has to be transformed into
mathematical logic (HOL). This is done by a C parser written in Isabelle. The
parser defines the semantics of the C program, and gives it meaning in HOL
according to this semantics. It is this formalisation which we prove to be a
refinement of the mathematical (abstract) model.

Note that C does not have an official mathematical semantics, and parts of the C
language are notoriously subtle and not necessarily that well defined. We solve
this by restricting our use of C to a well-defined subset of the language, for which
we have an unambiguous semantics. However, this does not guarantee that our
assumed semantics for that subset is the same as the compiler’s. More on that
below.

The proof means that everything we want to know about the kernel’s behaviour (other
than timing) is expressed by the abstract spec, and the kernel cannot behave in ways
that are not allowed by the spec. Among others, this rules out the usual attacks
against operating systems, such as stack smashing, null-pointer dereference, any
code injection or control-flow highjacking etc.

Translation validation

Having a bug-free C implementation of the kernel is great, but still leaves us at the
mercy of the C compiler. Those compilers (we use GCC) are themselves large,
complex programs that have bugs. So we could have a bug-free kernel that gets
compiled into a buggy binary.

In the security-critical space, compiler bugs are not the only problem. A compiler
could be outright malicious, containing a Trojan that automatically builds in a back
door when compiling the OS. The Trojan can be extended to automatically add itself
when compiling the compiler, making it almost impossible to detect, even if the
compiler is open-source! Ken Thompson explained this attack in his Turing Award
lecture [Thompson, 1984].

To protect against defective or malicious compilers, we additionally verify the
executable binary that is produced by the compiler and linker. Specifically, we prove
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that the binary is a correct translation of the (proved correct) C code, and thus that the
binary refines the abstract spec.

Unlike the verification of the C code, this proof is not done manually but by an
automatic tool chain. It consists of several phases, as shown in Figure 3.2. A
formal model of the processor’s instruction set architecture (ISA) formalises the
binary in the theorem prover; we use an L3 formalisation of the RISC-V ISA, as
well as the extensively tested L3 Arm ISA formalisation of Fox and Myreen [2010].

Then a disassembler, written in the HOL4 theorem prover, translates this
low-level representation into a higher-level representation in a graph language
that basically represents control flow. This transformation is provably correct.

The formalised C program is translated into the same graph language, through
provably correct transformations in the Isabelle/HOL theorem prover. We then
have two programs, in the same representation, which we need to show
equivalent. This is a bit tricky, as compilers apply a number of heuristic-driven
transformations to optimise the code. We apply a number of such
transformations through rewrite rules on the graph-language representation of
the C program (still in the theorem prover, and thus provably correct).

In the end we then have two programs that are quite similar but not the same,
and we need to prove that they have the same semantics. In theory this is
equivalent to the halting problem and as such unsolvable. In practice, what the
compiler does is deterministic enough to make the problem tractable. We do this
by throwing the programs, in small chunks, at multiple SMT solvers. If one of
these can prove that all the corresponding pieces have the same semantics, then
we know that the two programs are equivalent.

Note also that the C program that is proved to refine the abstract spec, and the C
program that we prove to be equivalent to the binary, are the same Isabelle/HOL
formalisations. This means that our assumptions on C semantics drop out of
the assumptions made by the proofs. Altogether, the proofs not only show that
the compiler did not introduce bugs, but also that its semantics for the C subset
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we use are the same as ours.

Security properties

Figure 3.1 also shows proofs between the abstract spec and the high-level security
properties confidentiality, integrity and availability (these are commonly dubbed the
CIA properties). These state that the abstract spec is actually useful for security: They
prove that in a correctly configured system, the kernel will enforce these properties.

Specifically, seL4 enforces

confidentiality: seL4 will not allow an entity to read (or otherwise infer) data without
having been explicitly given read access to the data;

integrity: seL4 will not allow an entity to modify data without having been explicitly
given write access to the data;

availability: seL4 will not allow an entity to prevent another entity’s authorised use of
resources.

These proofs presently do not capture properties associated with time. Our
confidentiality proofs rule out covert storage channels but presently not covert
timing channels, which are used by such attacks as Spectre. Preventing timing
channels is something we are working on [Heiser et al., 2019]. Similarly, the
integrity and availability proofs presently do not cover timeliness, but our new
MCS model [Lyons et al., 2018] is designed to cover those aspects (see
Section 5.2).

Proof assumptions

All reasoning about correctness is based on assumptions, whether the reasoning is
formal, as with seL4, or informal, when someone thinks about why their program
might be “correct”. Every program executes in some context, and its correct behaviour
inevitably depends on some assumptions about this context.

One of the advantages of machine-checked formal reasoning is that it forces people
to make those assumptions explicit. It is not possible to make unstated assumptions,
the proofs will just not succeed if they depend on assumptions that are not clearly
stated. In that sense, formal reasoning protects against forgetting assumptions, or
not being clear about them; that in itself is a significant benefit of verification.

The verification of seL4 makes three assumptions:

Hardware behaves as expected. This should be obvious. The kernel is at the mercy of
the underlying hardware, and if the hardware is buggy (or worse, has Trojans),
then all bets are off, whether you are running verified seL4 or any unverified OS.
Verifying hardware is outside the scope of seL4 (and the competency of TS);
other people are working on that.

The spec matches expectations. This is a difficult one, because one can never be
sure that a formal specification means what we think it should mean. Of course,
the same problem exists if there is no formal specification: if the spec is
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informal or non-existent, then it is obviously impossible to precisely reason
about correct behaviour.

One can reduce this risk by proving properties about the spec, as we have done
with our security proofs, which show that seL4 is able to enforce certain security
properties. That then shifts the problem to the specification of those properties.
They are much simpler than the kernel spec, reducing the risk of
misunderstanding.

But in the end, there is always a gap between the world of mathematics and the
physical world, and no end of reasoning (formal or informal) can remove this
completely. The advantage of formal reasoning is that you know exactly what
this gap is.

The theorem prover is correct. This sounds like a serious problem, given that
theorem provers are themselves large and complex programs. However, in
reality this is the least concerning of the three assumptions. The reason is that
the Isabelle/HOL theorem prover has a small core (of a few 10 kSLOC) that
checks all proofs against the axioms of the logic. And this core has checked
many proofs small and large from a wide field of formal reasoning, so the
chance of it containing a correctness-critical bug is extremely small.

Proof status and coverage

seL4 has been or is being verified for multiple architectures: Arm, x86 and RISC-V.
Some of these are more complete than others, but the missing bits are generally
worked on or waiting for funding. Please refer to the seL4 project status page for
details.

3.2 The seL4 Microkit

The Microkit is a thin abstraction layer over seL4 that hides much of seL4’s
complexities at the cost of imposing the restriction of a static system architecture: At
system configuration time, all components and their authorised communication
channels are known.

Protection 
Domain 1

init(…)

notified(…)

protected(…)

Memory Region

Communication 
Cannel

Protected 
Procedure Call

notify(…)

Protection 
Domain 2

init(…)

notified(…)

Figure 3.3: Microkit abstractions.
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Figure 3.3 shows these abstractions (yes, that’s all!) The protection domain (PD) is the
process abstraction: it represents a program in execution in its own, isolated address
space. Two PDs can be connected by a communication channel and may also share
memory regions that are mapped in one or more PDs’ address spaces. A VM is similar
to a PD in that it is an isolated component, but has the additional capability of running
a guest OS.

Microkit further simplifies programming by imposing an event-handling model.
Specifically, each PD has two or three entry points: init(), notified() and,
optionally, protected(). These are provided by the programmer and invoked by
the framework on particular events: init is called exactly once at system
initialisation time and before any of the other entry points are called. notified()
is invoked if the PD at the other end of the channel calls the notify() API on the
channel, and protected() is invoked if the PD at the other end of a channel calls
the ppcall() API.

PDs have scheduling parameters, which include a priority. notify() calls are
asynchronous: they never block, and the exact time at which the receiver PD’s
notified() function is invoked depends on priorities and whether the two PDs
are executing on the same core or not. These calls pass no data to the receiver
other than the identity of the notifier, and as such behave similarly to interrupts.
In contrast, a ppcall() behaves like a normal function call, except that the code
it executes happens to be in a different PD. In particular, ppcall() is
synchronous, i.e. it blocks the caller until the callee returns from its protected()
handler. It can also pass arguments and return a result value. To prevent
deadlock, a ppcall() is only allowed from lower to higher priority.

PDs providing a protected() handler are referred to as server, and the PD
invoking ppcall() is called a client. Servers execute on the client’s scheduling
context (see Section 5.2) and core, meaning that their usage of the CPU resource
is properly accounted to the client. (This assumes that the server is configured
as “passive”, which is the recommended approach.)

The Microkit programming model, if used properly, makes PDs
location-transparent: A PD does not know whether the PD at the other end of a
channel is running on the same or a different core. This greatly simplifies
building multicore systems.

The (static) architecture of a Microkit system is specified in a system description file
(SDF), which specifies all the PDs of the system with their scheduling parameters (and
a few more attributes, such as whether the PD manages a VM or has the right to
handle interrupts), the communication channels, and memory regions and how they
are mapped into PDs.

The programmer writes each PD as a separate program, and links it against
libmicrokit to produce an executable (ELF) file for each PD. The Microkit comes with
an SDK, which mangles the programmer-provided ELF file with a kernel binary as
specified by the SDF. The programmer can use the build tool of their choice (which
can be a simple Makefile) for building the system.

The Microkit promise to the system designer is that what is specified in the SDF (and
visualised as in Figure 3.3) is a faithful representation of the possible interactions. In
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particular, it promises that no interactions are possible beyond those defined in the
SDF.
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Figure 3.4: Verified architecture mapping and system generation (note that not all veri-
fication steps are of full strength yet). Green boxes are generated provably correct.

Of course, this promise depends on enforcement by seL4, and the SDF representation
must be mapped onto low-level seL4 objects and access rights to them. This is what
the Microkit machinery achieves, and is shown in Figure 3.4.

In the figure, the architecture (i.e. what is described in the SDF) is shown at the top.
This is a fairly simple system, consisting of four native PDs and one PD that houses a
virtual machine hosting a Linux guest with a couple of networking drivers. The Linux
VM is only connected to other PDs via the crypto PD, which ensures that it can only
access encrypted links and cannot leak data.

Even this simple system maps to hundreds if not thousands of seL4 objects, an
indication of the complexity reduction provided by the Microkit abstraction.

For the seL4-level description we have another formal language, called CapDL
(capability distribution language). The system designer never needs to deal with
CapDL, it is a purely internal representation. The Microkit framework contains a
compiler which automatically translates the SDF into CapDL, indicated by the box
arrow pointing left-down. The box in the left of the figure gives a (simplified)
representation of the seL4 objects described in CapDL. (It is actually a simplified
representation of a much simpler system, basically just two of the PDs at the top of
Figure 3.3 and the channel between them.)
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The CapDL spec is a precise representation of access rights in the system, and it is
what seL4 enforces. Which means that once the system gets into the state described
by the CapDL spec, it is guaranteed to behave as described by the SDF spec, and
therefore the architecture-level description is sufficient for further reasoning about
security properties.

So we need assurance that the system boots up into the state described by the CapDL
spec. We achieve this with a second automated step: We generate from CapDL the
startup code that, as soon as seL4 itself has booted, takes control and generates all
the seL4 objects referenced by the spec, including the ones representing PDs, and
distributes the capabilities (see Chapter 4) that grant access to those objects
according to the spec. At the end of the execution of this init code, the system is
provably in the state described by the CapDL spec, and thus in the state represented
by the SDF spec.

libmicrokit, which maps the Microkit abstractions to the seL4 API, was also verified
for correct implementation.

Note: At the time of writing, the proofs about Microkit and CapDL are not yet complete
and based on an older version of the Microkit. Completion is planned for the future.

Note also that none of the verification work mentioned deals with information
leakage through timing channels (yet). This is a major unsolved research
problem, but we’re at the forefront of solving it.
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Chapter 4

About Capabilities

We encountered capabilities in Chapter 1, noting that they are access tokens. We will
now look at the concept in more detail.

4.1 What are capabilities?

Obj reference

Access rights

Object

Figure 4.1: A capability is a key that conveys specific rights to a particular object.

As shown in Figure 4.1, a capability is an object reference; in that sense it is similar to
a pointer (and implementation of capabilities are often referred as “fat pointers”).
They are immutable pointers, in the sense that a capability will always reference the
same object, so each capability uniquely specifies a particular object.

In addition to pointers, a capability also encodes access rights, in fact, the capability is
an encapsulation of an object reference and the rights it conveys to that object. In a
capability-based system, such as seL4, invoking a capability is the one and only way
of performing an operation on a system object. In fact, a system call in seL4 is a
capability invocation, with arguments specifying what operation to perform on the
object referenced by the invoked capability. The kernel will then check whether the
capability authorises the requested operation, and immediately abort the operation if
it is not authorised.

For example, an operation may be to call a function in a component. The object
reference embedded in the capability then points to an interface to that object, and
conveys the right to invoke that function (i.e. a particular method on the component
object). The capability may or may not at the same time convey the right to pass
another capability along as a function argument (delegating to the component the
right to use the object referenced by the capability argument).
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It is this fine-grained, object-oriented nature that makes capabilities the
access-control mechanism of choice for security-oriented systems. The rights given
to a component can be restricted to the absolute minimum it needs to do its job, as
required by the principle of least privilege.

Note that this notion of object capabilities is quite different from (and far more
powerful than) what Linux calls “capabilities”, which are really access-control
lists (ACLs) with system-call granularity. Linux capabilities, like all ACL schemes,
suffer from the confused deputy problem, which is at the root of many security
breaches, and explained in the next section. seL4 capabilities do not have this
problem.

seL4 capabilities are also not susceptible to the attack of Boebert [1984]; this
attack applies to capabilities directly implemented in hardware while seL4’s
capabilities are implemented and protected by the kernel.

There are ten types of seL4 objects, all referenced by capabilities:

Endpoints are used to perform protected function calls;

Reply Objects represent a return path from a protected procedure call;

Address Spaces provide the sandboxes around components (thin wrappers
abstracting hardware page tables);

Cnodes store capabilities representing a component’s access rights;

Thread Control Blocks represent threads of execution;

Scheduling Contexts represent the right to access a certain fraction of
execution time on a core;

Notifications are synchronisation objects (similar to semaphores);

Frames represent physical memory that can be mapped into address spaces;

Interrupt objects provide access to interrupt handling; and

Untypeds unused (free) physical memory that can be converted (“retyped”) into
any of the other types.

4.2 Why Capabilities

Fine-grained access control

As observed above, capabilities provide fine-grained access control, in line with the
security principle of least privilege (also called principle of least authority, short POLA).
This is in contrast to the more traditional access-control model of access-control lists
(ACLs), which are used in mainstream systems such as Linux or Windows, but also in
commercial, supposedly secure systems, such as INTEGRITY or PikeOS.

To understand the difference, consider how access control works in Linux: A file (and
the file model applies to most other Linux objects) has an associated set of
access-mode bits. Some of these bits determine what operations its owner can
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perform on the file, others represent the operations permitted for each member of the
file’s “group”, and a final set gives default rights to everyone else. This is a
subject-oriented scheme: It is a property of the subject (the process that is attempting
access) that determines the validity of the access, and all subjects with the same
value of the property (user ID or group ID) have the same rights. Moreover, these
subjects have the same rights to all files with the same settings of the access
properties.

This is a very coarse-grain form of access control, and is a fundamental limitation on
what security policies can be enforced. A typical scenario is that a user wants to run
an untrusted program (downloaded from the internet) to process a particular file but
wants to prevent the program from accessing any other files the user has access.
This is called a confinement scenario, and there is no clean way to do this in Linux,
which is the reason people came up with heavyweight workarounds (I like to call them
hacks) such as “chroot jails”, containers etc.

With capabilities, this problem is straightforward to solve, as capabilities provide an
object-oriented form of access control. Specifically, the kernel will allow an operation
to go ahead if and only if the subject that requests the operation presents a capability
that empowers it to perform the operation. In the confinement scenario, the untrusted
app can only access files to which it has been given a capability. So Alice invokes the
program, handing it a capability to the one file the program is allowed to read, plus a
capability to a file where the program can write its output, and the program is unable
to access anything else – proper least privilege.

Interposition and delegation

Capabilities have further nice properties. One is the ability to interpose access, which
is a consequence of the fact that they are opaque object references. If Alice is given a
capability to an object, she has no way of knowing what that object really is, all she
can do is invoke methods on the object.

For example, the system designer may pretend that the capability given to Alice refers
to a file, when in fact it refers to a communication channel to a security monitor, which
in turns holds the actual file capability. The monitor can examine Alice’s requested
operations and, if valid, performs them on the file on her behalf, while ignoring invalid
ones. The monitor effectively virtualises the file.

Interposition has applications beyond enforcing security policies; the approach
can be used for packet filtering, information-flow tracing and many more. A
debugger can transparently interpose and virtualise object invokations. It can
even be used to create objects lazily: Instead of an object reference, Alice is
given a capability to a constructor, which then replaces the capability once the
object has been created.

Another advantage of capabilities is that they support safe and efficient delegation of
privilege. If Alice wants to give Bob access to one of her objects, she can create
(“mint” in seL4 speak) a new capability to the object and hand it to Bob. Bob then can
use that capability to operate on the object without referring back to Alice. (If, instead,
Alice does want to stay in the loop, it can use virtualisation as explained above.)
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The new capability can have diminished rights; Alice can use this to give Bob only
read-only access to the file. And Alice can revoke Bob’s access at any time by
destroying the derived capability she handed to Bob.

Delegation is powerful and cannot easily and safely be done in ACL systems. A typical
case of its use is setting up sub-systems that manage resources autonomously. When
the system starts up, the initial process holds authority to all resources in the system
(other than the small and fixed amount the kernel uses itself). This initial resource
manager can then partition the system, by creating new processes (secondary
resource managers) and handing them privilege to disjoint subsets of the system
resources.

The subsystems can then autonomously (without referring back to the original
manager) control their subset of resources, while unable to interfere with each other.
Only if they want to change the original resource allocation do they need to involve the
original manager.

Ambient authority and the confused deputy

Alice gcc Log fileWX

alice$ gcc –o prog.o prog.c

Figure 4.2: The compiler as a confused deputy.

ACLs have an unsolvable problem, generally called the confused deputy. Let’s look at a
C compiler. It takes a C source file and produces an object-code output file, the file
names are passed as arguments. To run the compiler, a user, Alice, must have execute
permission on the compiler, as shown in Figure 4.2.

Assume the compiler also creates an entry in a system-wide log file for auditing
purposes. The log file is not accessible to normal users, so the compiler must execute
with elevated privilege in order to write to the log file (traditionally done by making it a
setuid program).

If Alice is malicious, she can trick the compiler into doing things it shouldn’t do. For
example, Alice can specify the password file as the output file when invoking the
compiler. The compiler, unless it is written very carefully to avoid any potential abuse,
will just open the output file (password file) and overwrite it with the compiled object
code. It doesn’t take a lot of skill for Alice to write a program which compiles such that
the newly generated password file will give her privileges she should not have.

The fundamental problem here is that ACL-based systems use ambient authority for
determining access rights. When the compiler opens its output file for writing, the OS
determines the validity of the access by looking at the compiler’s subject ID, to
determine whether it has access to the object. It is up to the compiler to determine
whether the operation is valid or not, making the compiler part of the system’s TCB,
meaning it has to be fully trusted to do the right thing under all circumstances.
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ACL-based systems can employ a number of workarounds to mitigate the particular
problem here, for example, ensuring that the password file and the log file are in
different security domains (which will not stop Alice from clobbering the log file, which
in itself is a useful thing to do for an attacker covering her traces). This then sets up
the usual arms race of attacks and workarounds, which is always a losing proposition
for the good guys.

The confusion arises due to ambient authority: The validity of an operation is
determined by the security state of the agent (compiler), which in this case is a deputy
operating on behalf of an original agent (Alice). For proper security, the access must
be determined by Alice’s security state. This means that denomination (the reference
to the file) and authority (the right to perform operations on the file) must be coupled,
a principle called no designation without authority. If that is the case, then the compiler
invokes the designated object (output file) with the authority that comes with the
designation (from Alice), and Alice can no longer confuse the deputy.

This is exactly what a capability system enforces. In such a system, Alice needs to
hold three capabilities: an execute capability on the compiler, a read capability on the
input file, and a write capability on the output file. She invokes the compiler with the
execute capability and passes the other two as arguments. When the compiler then
opens the output file, it does so with the capability provided by Alice, and there is no
more confusion possible. The compiler uses a separate capability, which it holds
itself, for opening the log file, keeping the two files well separated. In particular, it is
impossible for Alice to trick the compiler into writing to a file she has no access to
herself.

The confused deputy problem is the “killer app” for capabilities, as the problem is
unsolvable with ACLs. Hence, next time someone is trying to sell you a “secure” OS,
not only ask whether they have a correctness proof for the OS, but also whether it
uses capability-based access control. If the answer to either questions is “no”, then
you’re being offered snake oil.
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Chapter 5

Support for Hard Real-Time Systems

seL4 is designed as a protected-mode real-time OS. This means that unlike classical
RTOSes, seL4 combines real-time capability with memory protection, for security as
well as part of its support for mixed-criticality systems.

5.1 General real-time support

seL4 has a simple, priority-based scheduling policy that is easy to understand and
analyse, a core requirement for hard real-time systems. The kernel will, on its own,
never adjust priorities, so the user is in control.

Another requirement are bounded interrupt latencies. seL4, like most members of the
L4 microkernel family, executes with interrupts disabled while in kernel mode. This
design decision greatly simplifies the kernel design and implementation, as the kernel
(on a unicore processor) requires no concurrency control. seL4’s formal verification
would otherwise be infeasible, but the design is also an enabler for excellent
average-case performance.

There is a widespread belief that a real-time OS must be preemptible, except for
short critical sections, in order to keep interrupt latencies low. While true for
traditional unprotected RTOSes running on simple microcontrollers, this belief is
mistaken for a protected-mode system, such as seL4. The reason is that when
running on a powerful microprocessor with memory protection enabled, the time
for entering the kernel, switching context, and exiting the kernel, is significant,
and not much less than a seL4 system call. In terms of interrupt latencies, little
could be gained by a preemptible design, but the cost in terms of complexity
would be very high, making a preemptible design unjustified.

This works as long as all system calls are short. In seL4 they generally are, but there
are exceptions. Especially revoking a capability can be a long-running operation. seL4
deals with this situation by breaking such operations into short sub-operations, and
making it possible to abort and restart the complete operation after each
sub-operation, should there be a pending interrupt.

The approach is called incremental consistency. Each sub-operation transforms
the kernel from a consistent state into another consistent state. The operation is
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structured such that after aborting, the operation can be restarted without
repeating the sub-operations that had succeeded before the abort. The kernel
checks for pending interrupts after each sub-operation. If there are any, it aborts
the current operation, at which time the interrupt forces re-entry into the kernel,
which processes the interrupt. When finished, the original system call is
restarted, which then continues from the point where it was aborted,
guaranteeing progress.

We performed a complete and sound worst-case execution time (WCET) analysis of
seL4, which is the only one documented for a protected-mode OS [Blackham et al.,
2011, Sewell et al., 2016]. It means that we had obtained provable, hard upper bounds
for all system-call latencies and, by implication, worst-case interrupt latencies.

This WCET analysis is a prerequisite for supporting hard real-time systems, and also a
feature that puts seL4 apart from the competition. While complete and sound WCET
analyses had been done for unprotected RTOSes, the industry-standard approach for
protected-mode systems is to subject the kernel to high load, measure the latencies,
take the worst observed one and add a safety factor. There can be no guarantee that
the bound obtained by this approach is safe, and it is unsuitable for safety-critical
systems.

We did the WCET analysis of seL4 for Arm v6 processors. It has since fallen into
abeyance, as Arm has stopped providing the required information on the worst-case
latencies of instructions, and Intel never provided those for their architecture.
However, with the advent of open-source RISC-V processors, we will be able to redo
this analysis.

5.2 Mixed-criticality systems

What is a mixed-criticality system?

Criticality is a term from the safety domain relating to the seriousness of a failure of a
component. For example, avionics standards categorise failures from “no effect” (on
vehicle safety) to “catastrophic” (loss of life). The more critical a component, the more
extensive (and expensive) is the required assurance, so there is a strong incentive for
keeping criticalities low.

A mixed-criticality system (MCS) is made up of (interacting) components of different
criticalities. Its core safety requirement is that failure of a component must not affect
any more critical components, so the critical components can be assured
independent of the less critical ones.

The trend to MCS results from the desire to consolidate: Traditionally, critical systems
would use a dedicated microcontroller for each function, i.e. isolation by air-gapping.
With growing functionality, this approach leads to a proliferation of processors (and
their packaging and wiring), which causes space, weight and power (SWaP) problems,
which MCS aim to overcome.

This is similar to the security notion of having trusted and untrusted components in
the same system, and the core requirement on the OS is in both cases strong
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isolation. The challenge in the safety domain is that safety depends not only on
functional correctness but also on timeliness: Critical components typically have
real-time requirements, meaning that they have to respond to an event by a deadline.

Traditional approach to MCS

Traditional MCS OSes completely isolate components temporally and spatially, an
approach called strict time and space partitioning (TSP), exemplified by the ARINC 653
avionics standard [ARINC]. This means that each component is statically assigned a
fixed memory area, and partitions are executing according to a pre-determined
schedule, with fixed time slices.

The TSP approach guarantees isolation, but has severe drawbacks. The most obvious
one is poor resource utilisation. Every real-time component must be able to finish its
work within its time slice, so the time slice must be at least the component’s
worst-case execution time. The WCET of a component can be orders of magnitude
larger than the typical execution time, as it must allow for exceptional circumstances.

Furthermore, determining a safe bound for the WCET is generally tricky. For critical
components it must be done very conservatively to convince a sceptical certification
authority, which typically leads to large over-estimates. This means that typically the
processor is greatly under-utilised. But, because of the strict partitioning, the slack
time cannot be used by other components, so the poor utilisation is an inherent
problem. Basically, by retaining the strong isolation of air-gapping, TSP also retains its
poor resource usage.

Another big drawback of TSP is that interrupt latencies are inherently high. Take the
example of Figure 5.1, which might represent a (highly simplified) autonomous
vehicle. The critical component is a control loop, which executes once every 5ms to
process sensor data and send commands to actuators. Its WCET, and therefore time
slice, is 3ms. The vehicle also communicates with a ground station, which can update
way points. Because the system operates on a 5ms period, this is the latency at which
network interrupts can be processed, greatly limiting network throughput and
generally responsiveness to external events.

Control 
loop

Sensor
readings

Actuator
controls

NW 
driver

Interrupts Data

Data
Shared
data

Figure 5.1: Simplified example of a mixed-criticality system.
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MCS support in seL4

The core challenge with MCS is that the OS must provide strong resource isolation,
but TSP is overly simplistic (and thus inflexible). In terms of space resources, seL4
already has a flexible, powerful and provably secure model: object capabilities (see
Chapter 4). MCS support extends this to time: access to the processor is now also
controlled by capabilities.

seL4’s capabilities for processor time are called scheduling-context capabilities. A
component can only obtain processor time if it holds such a capability, and the
amount of processor time it can use is encoded in the capability. This is analogous to
the way access rights to spatial objects work.

In traditional seL4 (as in most L4 kernels before it) a thread had two main
scheduling parameters: a priority and a time slice, which determine access to the
processor. The priority determines when a thread can execute: it can run if there
is no higher-priority thread runnable. The time slice determines how long the
kernel will let the thread run before preempting it (unless it is preempted before
by a higher priority thread becoming runnable). When the time slice is exhausted,
the scheduler will again pick the highest-priority runnable thread (which may be
the thread just preempted), with a round-robin policy used within priority levels.

The MCS version of seL4 replaces the time slice by a capability to a
scheduling-context object, which performs a similar function, but in a more
precise way that is the key to isolation: A scheduling context contains two main
attributes. (1) a time budget, which is similar to the old time slice, and limits the
time for which a thread can execute until preempted. (2) a time period, which
determines how often the budget can be used: the thread will not get more time
than one budget per period, preventing it from monopolising the CPU
irrespective of its priority.

Scheduling contexts support reasoning about the amount of time a thread can
consume, and therefore, how much time is left. Specifically, they can be used to
prevent a high-priority thread from monopolising the processor.

Applied to the above example, this means that we can give the (less critical)
device driver a higher priority than the (critical) control component. This allows
the driver to preempt the control, leading to high responsiveness. But the budget
limit will stop the driver from monopolising the CPU.

For example, we give the controller a budget of 3ms (its WCET) and a period of
5ms (corresponding to the frequency at which it operates). And we give the
high-priority driver a small budget of 3µs with a period of 10µs, meaning it can
under no circumstances consume more than 30% of total processor time, yet
can execute frequently enough to ensure good responsiveness. Importantly we
can guarantee that the control, which needs no more than 60% of available
processor time, is left with enough time to meet its deadline.

By guaranteeing the critical deadline irrespective of the behaviour of the driver, we
isolate the control from the untrusted driver, according to the core requirement of
MCS. In particular, the driver need not be certified as safety-critical.
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seL4’s time capability model addresses a number of other challenges of MCS, which
go beyond the scope of this white paper, and we refer the interested reader to the
peer-reviewed publication [Lyons et al., 2018]. Suffice to say that seL4 provides the
most advanced and flexible MCS support of any OS suitable for critical systems.
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Chapter 6

Security is No Excuse for Poor
Performance

Performance has always been the hallmark of L4 microkernels, and seL4 is no
exception. We built seL4 for real-world use, and our aim was not to lose more than
10% in IPC performance relative to the fastest kernels we had before. As it turns out,
seL4 ended up beating the performance of those kernels.

And it beats the performance of any other microkernel. This is a claim that is difficult
to prove, as the competition generally holds their performance data close to their
chest (for very good reason!)

However, we make this performance claim, publicly, at every opportunity. If anyone
disagrees they need to present evidence. We also know through a number of informal
channels that IPC performance of other systems tends to range between 2 times
slower than seL4 to much slower, typically around a factor of ten.

The few independent performance comparisons certainly back our claim.

Mi et al. [2019] compare the performance of three open-source systems, seL4,
Fiasco.OC and Zircon. It finds that seL4 IPC costs are about 10–20% above the
hardware limit of kernel entry, address-space switch and kernel exit. Fiasco.OC is
more than a factor of two slower than seL4 (close to three times the hardware
limit), and Zircon is almost nine times slower than seL4.

Gu et al. [2016] compare the performance of CertiKOS to seL4, measuring 3,820
cycles for a round-trip IPC operation in CertiKOS compared to 1,830 in seL4, a
factor of two. However, it turns out sel4bench, the seL4 benchmarking suite, had
at the time a bug in dealing with timers on x86, resulting in exaggerated
latencies. The correct seL4 performance figure is around 720 cycles, or more
than five times faster than CertiKOS. This is in the context of CertiKOS offering
very limited functionality, and no capability-based security.
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Chapter 7

Real-World Deployment and Incremental
Cyber Retrofit

7.1 General considerations

When planning to protect the security or safety of your system with seL4, the first step
should be to identify the critical assets you need to protect. The aim should be to
minimise this part of your trusted computing base, and make it as modular as
feasible, with each module becoming an seL4-protected (Microkit) component.

The other important preparation is to check availability and verification status of seL4
on your platform. Obviously you will want a verified kernel, that’s what seL4 is all
about. However, even on platforms where the kernel is not verified, the fact that it
shares much of its code with a verified platform will give you much higher assurance
than with almost any other OS. But keep in mind that without verification the
assurance is not what it can be. Also, you must not make any verification claim if you
are using a kernel that is not verified for your platform, or that is in any way modified.

You furthermore will need to assess whether the available user-level infrastructure is
sufficient for your purpose. If not, then this is where the community may help you.
There are companies specialising in providing support for seL4 adoption. Also, if you
develop any generally useful components yourself, you should seriously consider
sharing them with the community under an appropriate open-source license. Those
who give back will find it easier to get help from others.

7.2 Retrofitting existing systems

Most real-world deployments of seL4 will not run everything native. Typically, there are
significant legacy components that would be expensive to port, because they are too
big or rely on too many system services that are not presently supported by seL4.
Also, frequently there would be little security or safety gain from running such legacy
stacks natively.

Using seL4’s virtualisation capabilities is frequently the pragmatic way to proceed,
Section 2.3 shows examples.

30

https://sel4.systems/Use/
https://docs.sel4.systems/Hardware/
https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://sel4.systems/Foundation/Trademark/
https://docs.sel4.systems/projects/available-user-components.html


Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss.
Mgr.

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local 

NW

Crypto

Cam-
era

Linux

VMM

Figure 7.1: Incremental cyber-retrofit of the Boeing ULB mission computer during the
DARPA HACMS program.

The typical approach is what we call incremental cyber-retrofit, a term coined by then
DARPA program director John Launchbury. As Figure 7.1 shows, this typically starts
out by simply putting the whole existing software stack into a virtual machine running
on seL4. Obviously this step buys nothing in terms of security and safety, it only adds
(very small) overhead. Its significance is that it provides a baseline from where to start
modularising.

A great example is the work our HACMS project partners did on cyber-retrofitting the
Boeing ULB autonomous helicopter. The original system ran on Linux, and in a first
step, the team put seL4 underneath.

The next step broke out two PDs: The particularly untrusted camera software was
moved to a second VM, also running Linux, with the two Linux VMs communicating
via channels. At the same time, the network stack was pulled out of the VM and
converted to a native component, also communicating with the main VM. (Note we
are using Microkit terminology here for ease of understanding, HACMS pre-dated the
Microkit and used CAmkES.)

The final step pulled all other critical modules, as well as the (untrusted) GPS
software, into separate PDs, removing the original main VM. The final system
consisted of a number of PDs running seL4-native code, and a single VM running just
Linux and the camera software.

The upshot was that while the initial system was readily hacked by the professional
penetration testers hired by DARPA, the end state was highly resilient. The attackers
could compromise the Linux system and do whatever they wanted with it, but were
unable to break out and compromise any of the rest of the system. The team was
confident enough to demonstrate an attack in-flight.
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Chapter 8

Conclusions

seL4 was the world’s first OS kernel with a proof of implementation correctness
(functional correctness). We then extended the verification down to the binary and up
to security-enforcement properties, as explained in Chapter 3.

While by now there are other verified OS kernels, seL4 still defines the state of the
art [Heiser, 2019]: It has the most comprehensive verification story, it is still the only
capability-based OS that is verified, and it has the most advanced real-time support.
And our ongoing research aims to ensure that seL4 will retain its position as the clear
leader among security- and safety-oriented OSes, for example by pioneering
systematic and principled prevention of information leakage through timing
channels [Ge et al., 2019].

Besides this technological leadership, seL4 is in practical terms still far ahead of its
successors: While we designed seL4 for real-world use from the beginning, almost all
other verified OS kernels are academic toys, and far from real-world capable. In fact,
we are only aware of one other (very recently) verified system that is practically
deployable (although in far more limited scenarios).

seL4’s real-world readiness is a result of two aspects that drove the design:
uncompromising performance focus, as highlighted in Chapter 6, and mechanisms
that are designed to support the widest range of application scenarios and security
policies, the latter enabled by capability-based access control (Chapter 4).

Ten years of taking seL4 to the real-world, including cyber-retrofitting legacy systems
(Chapter 7), has obviously helped us to refine and improve the system, but I’m proud to
say that mild, incremental changes were sufficient. The one exception is the MCS
support (Section 5.2), which required a fairly significant change to the model and its
implementation, but privileged management of time was the one thing we knowingly
left in the to-do basket at the time of the original design [Heiser and Elphinstone, 2016].

This white paper has hopefully given you a reasonable idea of what seL4 is, what you
can do with it, and, importantly, why you would want to use it. I hope this will help you
become an active member of the seL4 community, including joining and participating
in the seL4 Foundation.

I expect this document will keep evolving, and I am keen on feedback. But most of all,
I’m keen to hear of your experience with deploying seL4.

32

https://sel4.systems/Foundation


Acknowledgments

I gratefully acknowledge the feedback I received on earlier versions of this whitepaper,
which helped improve it. The following members of TS commented on drafts: Curtis
Millar, Gerwin Klein, Ihor Kuz, June Andronick, Liz Willer, Luke Mondy, Michael Norrish
and Zoltan Kocsis.

In addition I received comments from community members Ben Leslie and Davor
Ocelic.

Kim Pastor did a great job in creating the Foundation branding.

33



Bibliography

ARINC. Avionics Application Software Standard Interface. ARINC, November 2012.
ARINC Standard 653.

Simon Biggs, Damon Lee, and Gernot Heiser. The jury is in: Monolithic OS design is
flawed. In Asia-Pacific Workshop on Systems (APSys), Korea, August 2018. ACM.
doi: https://doi.org/10.1145/3265723.3265733. URL
https://trustworthy.systems/publications/full_text/Biggs_LH_18.pdf.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Gernot
Heiser. Timing analysis of a protected operating system kernel. In IEEE Real-Time
Systems Symposium, pages 339–348, Vienna, Austria, November 2011. IEEE
Computer Society. URL
https://trustworthy.systems/publications/nicta_full_text/4863.pdf.

William Earl Boebert. On the inability of an unmodified capability machine to enforce
the ⋆–property. In 7th DoD/NBS Computer Security Conference, pages 291–293,
September 1984.

Anthony Fox and Magnus Myreen. A trustworthy monadic formalization of the ARMv7
instruction set architecture. In International Conference on Interactive Theorem
Proving, volume 6172 of Lecture Notes in Computer Science, pages 243–258,
Edinburgh, UK, July 2010. Springer.

Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the missing
OS abstraction. In EuroSys Conference, Dresden, Germany, March 2019. ACM. doi:
10.1145/3302424.3303976. URL
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. CertiKOS: An extensible architecture for building
certified concurrent OS kernels. In USENIX Symposium on Operating Systems
Design and Implementation, pages 653–669, Savannah, GA, US, November 2016.
USENIX Association.

Gernot Heiser. 10 years seL4: Still the best, still getting better, August 2019. URL
https://microkerneldude.wordpress.com/2019/08/06/
10-years-sel4-still-the-best-still-getting-better/. Blog post.

Gernot Heiser and Kevin Elphinstone. L4 microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on Computer Systems, 34(1):1:1–1:29,
April 2016. doi: 10.1145/2893177. URL
https://trustworthy.systems/publications/nicta_full_text/8988.pdf.

34

https://trustworthy.systems/publications/full_text/Biggs_LH_18.pdf
https://trustworthy.systems/publications/nicta_full_text/4863.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf
https://microkerneldude.wordpress.com/2019/08/06/10-years-sel4-still-the-best-still-getting-better/
https://microkerneldude.wordpress.com/2019/08/06/10-years-sel4-still-the-best-still-getting-better/
https://trustworthy.systems/publications/nicta_full_text/8988.pdf


Gernot Heiser, Gerwin Klein, and Toby Murray. Can we prove time protection? In
Workshop on Hot Topics in Operating Systems (HotOS), pages 23–29, Bertinoro,
Italy, May 2019. ACM. doi: https://doi.org/10.1145/3317550.3321431. URL
https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an
OS kernel. In ACM Symposium on Operating Systems Principles, pages 207–220, Big
Sky, MT, USA, October 2009. ACM. URL
https://trustworthy.systems/publications/nicta_full_text/1852.pdf.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems, 32(1):2:1–2:70, February
2014. doi: 10.1145/2560537. URL
https://trustworthy.systems/publications/nicta_full_text/7371.pdf.

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-context
capabilities: A principled, light-weight OS mechanism for managing time. In EuroSys
Conference, Porto, Portugal, April 2018. ACM. URL
https://trustworthy.systems/publications/full_text/Lyons_MAH_18.pdf.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. SkyBridge: Fast and
secure inter-process communication for microkernels. In EuroSys Conference,
Dresden, DE, March 2019. ACM.

Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-assurance
determination of loop bounds and infeasible paths for WCET analysis. In IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), Vienna,
Austria, April 2016. URL
https://trustworthy.systems/publications/nicta_full_text/9118.pdf.

Thomas Sewell, Felix Kam, and Gernot Heiser. High-assurance timing analysis for a
high-assurance real-time OS. Real-Time Systems, 53:812–853, September 2017. doi:
https://doi.org/10.1007/s11241-017-9286-3. URL
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf.

Ken Thompson. Reflections on trusting trust: Turing Award lecture. Communications
of the ACM, 27(8):761–763, August 1984.

35

https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/7371.pdf
https://trustworthy.systems/publications/full_text/Lyons_MAH_18.pdf
https://trustworthy.systems/publications/nicta_full_text/9118.pdf
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf

	List of Figures
	What Is seL4?
	seL4 Is a Microkernel and a Hypervisor, It Is Not an OS
	Monolithic kernels vs microkernels
	seL4 Is a microkernel, not an OS
	seL4 is also a hypervisor
	seL4 is not seLinux

	seL4's Verification Story
	Correctness and security enforcement
	The seL4 Microkit

	About Capabilities
	What are capabilities?
	Why Capabilities

	Support for Hard Real-Time Systems
	General real-time support
	Mixed-criticality systems

	Security is No Excuse for Poor Performance
	Real-World Deployment and Incremental Cyber Retrofit
	General considerations
	Retrofitting existing systems

	Conclusions
	Bibliography

