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Usable CPU count by kernel configuration
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Unicore SMP

SMP seL4 configurations
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Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel
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What are the trade-offs?
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Concurrency in the kernel

• seL4 proofs model sequential 
execution

• proof has to cover all conceptual 
scenarios that can arise from 
concurrent execution

• Want to introduce mutual 
exclusion primitives and prove 
them correct

• Kernel entry code runs outside of 
the lock
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Weak memory models

• Modern ISAs don’t have strong 
memory models

• Can observe behaviours that 
aren’t sequentially consistent

• Concurrent code that works on 
same core may not work on 
separate cores
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Check-point

• SMP kernel has shared state

• Concurrency in the kernel

• Big kernel lock:

• Simplifies verification, but not 
by a lot initially

• Adds locking overhead to all 
kernel operations

• Non-negligible code changes for 
implementing SMP design
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Multiprocessing on seL4 with verified kernels?

1. No concurrency in the kernel

2. No changes to verified C code

3. Still need to be able to build useful systems

4. Ideally possible to migrate to SMP
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seL4

Partitioned kernels
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Memory Partitioned kernel

• Kernel memory management via untypeds
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Inter-process Communication
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Signalling in multikernels

1. If the target is on a different 
core, invoke an IPI capability

2. Generate an IPI

3. Other core is interrupted and 
delivers IRQ to bound 
notification

4. Remote thread receives 
notification and acks IPI IRQ

seL4

App a App b

seL4

Node 1 Node 2
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Example: a multikernel system with CAmkES*

* Or other component architectures
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Example: CAmkES ADL
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assembly {
composition {

component Adder adder;
component Client client;

connection seL4SharedData s(from adder.d, to client.d);
connection seL4NotificationNative irq(from client.irq2, to adder.irq);
connection seL4NotificationNative irq2(from adder.irq2, to client.irq);

}

configuration {
adder.node = "node1";
client.node = "node0";

}
}

component Adder {
control;
dataport Buf d;
consumes DataAvailable irq;
emits DataAvailable irq2;

}

component Client {
control;
dataport Buf d;
consumes DataAvailable irq;
emits DataAvailable irq2;

}



Example: CAmkES ADL
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assembly {
composition {

component Kernel node0;
}
configuration {

node0.node_id = 0;
node0.memory = [{

"node": "/memory@40000000",
"reg": [

{"start": 0x40000000, "size": 0x10000000 },
]}];

node0.reserved = [
{"start": 0x50000000, "size": 0x10000000 },

];
node0.shared_pool = [

{"start": 0x60000000, "size": 0x10000000 },
];

}
}

assembly {
composition {

component Kernel node1;
}
configuration {

node1.node_id = 1;
node1.memory = [{

"node": "/memory@40000000",
"reg": [

{"start": 0x50000000, "size": 0x10000000 },
]}];

node1.reserved = [
{"start": 0x40000000, "size": 0x10000000 },

];
node1.shared_pool = [ 

{"start": 0x60000000, "size": 0x10000000 },
];

}
}



Example: Memory Layout
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Example: CAmkES build

23

Kernel.0.elf

Elfloader.img

Capdl.0.img

CAMKES.adl

Capdl.1.imgKernel.1.elf



Example: Boot process
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IPC with CAmkES

Adder Client
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Summary of work so far

• Elfloader changed to support multiple kernel setups

• Kernel compilation tooling tweaked to support 
partitioned memory and IRQs

• IPI capability

• CAmkES extensions

• Multiple kernels and capdl-loader-apps

• Multikernel aware connectors

• Future work to support SMP apps on multikernel
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Steps towards verified SMP

1. Build out concurrent verifiection
framework for multikernel

2. Unified domain scheduler

3. Unified kernel address space

4. Scalable notifications

5. Other forms of kernel resource sharing

6. General SMP
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Follow-up steps

• SMP-like user apps

• Scalable cross-core notifications

• Investigating impact of replicated 
data on shared caches

• Transparent cross-core 
seL4RPCCall CAmkES connectors

• Finish off multi-vm multicore 
example
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Overall summary

• Current verified configurations only single core

• SMP verified configurations still a long way away

• Should be possible to support verified 
multikernel configurations significantly sooner

• Restrictions from multikernel design may be less 
significant for static component architectures

• Multikernel verification projects also work 
towards eventual SMP verification
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Discussion
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