
Multiprocessing on seL4 with verified kernels

Kent McLeod | seL4 Summit 2022 | Munich, Germany

Usable CPU count by kernel configuration

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

U
sa

b
le

 c
o

re
s

Hardware available cores

Unverified Verified
2

Unicore SMP

SMP seL4 configurations

3

Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel

4

What are the trade-offs?

5

Multikernel SMP

Kernel State Partitioned Shared

Concurrency in
Kernel

No - better
verification

Yes - hard to
verify

Cross-core
communications

Implemented at
userlevel

Implemented by
kernel

Memory I/O
device

I/O
device

CPU

Control Unit

Execution unit

6

Cache
System bus

Memory I/O
device

I/O
device

CPU

Control Unit

Execution unit

Control Unit

Execution unit

Cache

CPU

SMP
Block

7

System bus

Ready Queues

IdleThread ref

CurThread ref

MCS State

FPU state

VCPU state

IPI rschdl pend

Ready Queues

IdleThread ref

CurThread ref

MCS State

FPU state

VCPU state

IPI rschdl pend

Ready Queues

IdleThread ref

CurThread ref

MCS State

FPU state

VCPU state

IPI rschdl pend

8

0
1

Ready Queues

IdleThread ref

CurThread ref

curMCS State

curFPU state

curVCPU state

IPI rschdl pend

smpStatedata_t

2 3

SchedContext

MsgIdentifier

BoundTCB

Queue_head

Queue_tail

Queue_head

Queue_tail
irqNum

TargetNode

TriggerMode

notification_t

ep_t

irq_t

SCRef

tcb_t

CNodeEntries

ThreadState

tcbContext

DomID?

period

consumed

sc_t

core

tcbRef

seL4 SMP kernel (Big lock)

Hardware

seL4

App App App App App

Multicore (SMP)

9

Concurrency in the kernel

• seL4 proofs model sequential
execution

• proof has to cover all conceptual
scenarios that can arise from
concurrent execution

• Want to introduce mutual
exclusion primitives and prove
them correct

• Kernel entry code runs outside of
the lock

10

Ra = *A
Ra = Ra + 1
*A = Ra

Ra = *A
Ra = Ra + 1
*A = Ra

A := 0

A = 1, Ra = 1, Rb= 1

Weak memory models

• Modern ISAs don’t have strong
memory models

• Can observe behaviours that
aren’t sequentially consistent

• Concurrent code that works on
same core may not work on
separate cores

11

*A = 1
Ra = *B

*B = 1
Rb = *A

A := 0, B:= 0

Ra := 0, Rb:= 0

12

Check-point

• SMP kernel has shared state

• Concurrency in the kernel

• Big kernel lock:

• Simplifies verification, but not
by a lot initially

• Adds locking overhead to all
kernel operations

• Non-negligible code changes for
implementing SMP design

13

Multiprocessing on seL4 with verified kernels?

1. No concurrency in the kernel

2. No changes to verified C code

3. Still need to be able to build useful systems

4. Ideally possible to migrate to SMP

14

seL4

Partitioned kernels

seL4 seL4 seL4

Node 1 Node 2 Node 3 Node 4

15

Hardware

User

Kernel

Memory Partitioned kernel

• Kernel memory management via untypeds

16

Kernel
Untyped 1

Kernel
Untyped 0

Device untypedKernel 0 Kernel 1

Inter-process Communication

1717

Multikernel

PPC

Signalling Notifications or
IPIs

Shared
memory

Endpoints or implemented
at userlevel

Unicore and SMP

Endpoints

Notifications

Duplicate frame
mappings

Duplicate frame mappings
of device untyped

Signalling in multikernels

1. If the target is on a different
core, invoke an IPI capability

2. Generate an IPI

3. Other core is interrupted and
delivers IRQ to bound
notification

4. Remote thread receives
notification and acks IPI IRQ

seL4

App a App b

seL4

Node 1 Node 2

18

1.

2.

3.

4.

Example: a multikernel system with CAmkES*

* Or other component architectures
19

seL4

Adder Client

seL4

Node 1 Node 2

Example: CAmkES ADL

20

assembly {
composition {

component Adder adder;
component Client client;

connection seL4SharedData s(from adder.d, to client.d);
connection seL4NotificationNative irq(from client.irq2, to adder.irq);
connection seL4NotificationNative irq2(from adder.irq2, to client.irq);

}

configuration {
adder.node = "node1";
client.node = "node0";

}
}

component Adder {
control;
dataport Buf d;
consumes DataAvailable irq;
emits DataAvailable irq2;

}

component Client {
control;
dataport Buf d;
consumes DataAvailable irq;
emits DataAvailable irq2;

}

Example: CAmkES ADL

21

assembly {
composition {

component Kernel node0;
}
configuration {

node0.node_id = 0;
node0.memory = [{

"node": "/memory@40000000",
"reg": [

{"start": 0x40000000, "size": 0x10000000 },
]}];

node0.reserved = [
{"start": 0x50000000, "size": 0x10000000 },

];
node0.shared_pool = [

{"start": 0x60000000, "size": 0x10000000 },
];

}
}

assembly {
composition {

component Kernel node1;
}
configuration {

node1.node_id = 1;
node1.memory = [{

"node": "/memory@40000000",
"reg": [

{"start": 0x50000000, "size": 0x10000000 },
]}];

node1.reserved = [
{"start": 0x40000000, "size": 0x10000000 },

];
node1.shared_pool = [

{"start": 0x60000000, "size": 0x10000000 },
];

}
}

Example: Memory Layout

Kernel 1Kernel 0
Client

program
Adder

program

Shared
Memory

Device 1 Device 2

Client
virtual

address
space

Adder
virtual

address
space

Physical
address
space

22

Example: CAmkES build

23

Kernel.0.elf

Elfloader.img

Capdl.0.img

CAMKES.adl

Capdl.1.imgKernel.1.elf

Example: Boot process

24Time since boot

0

1

Early stage
bootloaders

Elfloader

Elfloader Kernel.1 init Capdl.0 init System 1 (Adder)

Kernel.0 init Capdl.0 init System 0 (Client)

IPC with CAmkES

Adder Client

25

Adder Client

Adder Client

Basic RPC

Dataport

Dataport
+ Signalling

Intra-core Cross-core

Summary of work so far

• Elfloader changed to support multiple kernel setups

• Kernel compilation tooling tweaked to support
partitioned memory and IRQs

• IPI capability

• CAmkES extensions

• Multiple kernels and capdl-loader-apps

• Multikernel aware connectors

• Future work to support SMP apps on multikernel

26

Steps towards verified SMP

1. Build out concurrent verifiection
framework for multikernel

2. Unified domain scheduler

3. Unified kernel address space

4. Scalable notifications

5. Other forms of kernel resource sharing

6. General SMP

27

Follow-up steps

• SMP-like user apps

• Scalable cross-core notifications

• Investigating impact of replicated
data on shared caches

• Transparent cross-core
seL4RPCCall CAmkES connectors

• Finish off multi-vm multicore
example

28

Overall summary

• Current verified configurations only single core

• SMP verified configurations still a long way away

• Should be possible to support verified
multikernel configurations significantly sooner

• Restrictions from multikernel design may be less
significant for static component architectures

• Multikernel verification projects also work
towards eventual SMP verification

29

Discussion

30

