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Computer Doesn’t Work.  
What Do You Do?
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Challenges
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Why does Restart Work?

• Erroneous State
• Some state making system misbehave
• Not sure what specifically or how to make state good again
• Restart -> Clean Slate: known good state
• Tada! It works

• Problem
• Drastic approach
• Large downtime
• Lose good working state
• Might not fix the erroneous state
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Restart in Resilient Systems

We want Clean Slate, but:
• Reduce downtime
• Reduce loss of non-erroneous state
• Deal with persistent failures
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Erlang/OTP and Let it Crash

• Erlang/OTP
• Developing highly reliable systems at Ericsson
• Erlang: functional language, actor concurrency
• OTP: Platform - Design principles, libraries, tools

• Supervision Trees
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Why does Let it Crash Work?

• Distributed architecture
• many communicating processes

• Processes isolation
• processes don’t share resources

• Explicit communication
• transparently reuse new connections

• Stateless processes
• functional, immutable data structures
• OTP design patterns: split into stateful and non-stateful processes
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Let it Crash and seL4

• A good Match?
• Distributed architecture
• Process isolation
• Explicit communication

• Basic requirements
• Detect fault
• Tear down process
• Start new process

• Challenges
• seL4 systems often static

• How to restart processes? How to reset communication channels?
• Reset non-software state

• E.g. hardware for drivers
• Stateless processes
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The Kry10 OS Approach
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Challenge: To Crash or Not To Crash?

When is it not useful to crash a component?
• Reasons

• Component can recover from error (no need to crash)
• Failure not caused by component state (e.g. hardware)
• Failure not caused by erroneous state (correct state causes fault)
• Component contains critical state (can’t afford to lose that state)
• Erroneous state is persistent (still there after restart)

• Error Kernel
• Set of components with critical state
• Goal: Reduce size of error kernel
• Design: split into components that store state vs computational components
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Challenge: Dealing with Persistent Failure

What to do if a component keeps failing?

Heuristics
• Restart count
• Increase restart domain
• Sanitise persistent state
• Reinstall, revert, update component code
• Give up…
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Conclusion

• Restart -> Clean Slate
• Erlang/OTP Let it Crash works as fine grained restart
• Apply to seL4 and Kry10 OS!
• Challenges
• Crashing isn’t always possible -> reduce error kernel
• Persistent failures -> heuristics, eventually give up


