
Crashing for Reliability
Ihor Kuz

seL4 summit 2023



Crashing for Reliability | Ihor Kuz 2

Computer Doesn’t Work.  
What Do You Do?





4

Challenges
Crashing for Reliability | Ihor Kuz



Crashing for Reliability | Ihor Kuz 5

Why does Restart Work?

• Erroneous State
• Some state making system misbehave
• Not sure what specifically or how to make state good again
• Restart -> Clean Slate: known good state
• Tada! It works

• Problem
• Drastic approach
• Large downtime
• Lose good working state
• Might not fix the erroneous state



Crashing for Reliability | Ihor Kuz 6

Restart in Resilient Systems

We want Clean Slate, but:
• Reduce downtime
• Reduce loss of non-erroneous state
• Deal with persistent failures

6

PROTECTION LIFECYCLE
RESILIENCE



Worker1Worker1Worker1

Crashing for Reliability | Ihor Kuz 7

Erlang/OTP and Let it Crash

• Erlang/OTP
• Developing highly reliable systems at Ericsson
• Erlang: functional language, actor concurrency
• OTP: Platform - Design principles, libraries, tools

• Supervision Trees

Supervisor1

Supervisor2
Worker2

Worker3



Worker2Worker2

Crashing for Reliability | Ihor Kuz 8

Worker1

Erlang/OTP and Let it Crash

• Erlang/OTP
• Developing highly reliable systems at Ericsson
• Erlang: functional language, actor concurrency
• OTP: Platform - Design principles, libraries, tools

• Supervision Trees

Supervisor1

Supervisor2

Worker3



Supervisor2Supervisor2

Worker3

Worker2

Crashing for Reliability | Ihor Kuz 9

Worker1

Worker3

Worker2

Erlang/OTP and Let it Crash

• Erlang/OTP
• Developing highly reliable systems at Ericsson
• Erlang: functional language, actor concurrency
• OTP: Platform - Design principles, libraries, tools

• Supervision Trees

Supervisor1



Crashing for Reliability | Ihor Kuz 10

Why does Let it Crash Work?

• Distributed architecture
• many communicating processes

• Processes isolation
• processes don’t share resources

• Explicit communication
• transparently reuse new connections

• Stateless processes
• functional, immutable data structures
• OTP design patterns: split into stateful and non-stateful processes



Crashing for Reliability | Ihor Kuz 11

Let it Crash and seL4

• A good Match?
• Distributed architecture
• Process isolation
• Explicit communication

• Basic requirements
• Detect fault
• Tear down process
• Start new process

• Challenges
• seL4 systems often static

• How to restart processes? How to reset communication channels?
• Reset non-software state

• E.g. hardware for drivers
• Stateless processes

✓
✓

✓

✓
✓
✓



Weatherstation

admin

tunnel

Root (fault handler, 
process manager)

Root (fault handler, 
process manager)

Weatherstation-
2

Admin-2

tunnelTunnel-2

Crashing for Reliability | Ihor Kuz 12

The Kry10 OS Approach

ethernet

Weather 
sensor

i2c



Crashing for Reliability | Ihor Kuz 13

Challenge: To Crash or Not To Crash?

When is it not useful to crash a component?
• Reasons

• Component can recover from error (no need to crash)
• Failure not caused by component state (e.g. hardware)
• Failure not caused by erroneous state (correct state causes fault)
• Component contains critical state (can’t afford to lose that state)
• Erroneous state is persistent (still there after restart)

• Error Kernel
• Set of components with critical state
• Goal: Reduce size of error kernel
• Design: split into components that store state vs computational components



Crashing for Reliability | Ihor Kuz 14

Challenge: Dealing with Persistent Failure

What to do if a component keeps failing?

Heuristics
• Restart count
• Increase restart domain
• Sanitise persistent state
• Reinstall, revert, update component code
• Give up…



Crashing for Reliability | Ihor Kuz 15

Conclusion

• Restart -> Clean Slate
• Erlang/OTP Let it Crash works as fine grained restart
• Apply to seL4 and Kry10 OS!
• Challenges
• Crashing isn’t always possible -> reduce error kernel
• Persistent failures -> heuristics, eventually give up


