i -gAvuuSEL
jpin ‘aa-u. u N

Running Certified
Operating Systems
under the sel4

Hypervisor

Chris Guikema

chris.guikema@dornerworks.com

<C
(g}
o
n,
©
o0
<
i
=

DORNERWORKS

Agendao

o What does a Hypervisor need to do?

o How isthe CAmKES-VM (and VMM libraries) built around Linux?
o Whatis Deos?

o How can the CAmKES-VM Support Deos & Linux?

o How can we certify seL4 Hypervisor based systems?

V' DORNERWORKS >

Background

o What does a Hypervisor need to do?

o At a high level, it needs to:
* Context switch Guest Operating Systems
* Provide Stage 2 (ARM) or EPT (x86) Translations
* Emulate necessary hardware resources that either seL4 owns ora VM may need to share
* Interrupt controller, Serial, Timers, etc...
* Handle guest faults and events

* Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtlO)

V' DORNERWORKS :

Background

o What does a Hypervisor need to do?

o At a high level, it needs to:
» Context switch Guest Operating Systems
* Provide Stage 2 (ARM) or EPT (x86) Translations
* Emulate necessary hardware resources that either seL4 owns ora VM may need to share
* Interrupt controller, Serial, Timers, etc...
* Handle guest faults and events

* Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtlO)

V' DORNERWORKS -

Background

o What does a Hypervisor need to do? NO selL.4 KERNEL MODIFICATIONS WERE
REQUIRED

o At a high level, it needs to:
* Context switch Guest Operating Systems
* Provide Stage 2 (ARM) or EPT (x86) Translations
* Emulate necessary hardware resources that either seL4 owns ora VM may need to share
* Interrupt controller, Serial, Timers, etc...
* Handle guest faults and events

* Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtlO)

' DORNERWORKS s

Guest State Post VMM Initialization

Guest Memory

0x0

Linux

Initrd

0x4000_0000

OXFEEQ_0000

esi:
eip:

VCPU Context:

eax: O
ebx: 0
ecx: O
edx: O

&guest boot info
&linux entry point

Event/Fault
Handlers

__.->» LAPIC Emulation

V' DORNERWORKS

6

What Operating Systems has the CAMKES-VM Rune

V' DORNERWORKS -

What Operating Systems has the CAMKES-VM Run?¢

Linux
—

V' DORNERWORKS

Checklist

o Provide Stage 2 (ARM) or EPT (x86) Translations
o Emulate necessary hardware resources
o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

V' DORNERWORKS °

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

Low Memory

Guest Memory 0x500 (Cmd Line)

0xt 0x600 (Guest Boot Info)

e820

0 => 0x500" (2)

0x500 -> 0x9€ec00 (1)

Linux

0xE0000 (ACPI)

0x9fc00 -> 0x10003000 (2)
0x10003000 -> 0x30003000 (1)

Initrd 0x30003000 -> 0x100000000 (2)

0x100000000 -> 0x160000000 (1)

0x4000_0000

0XFEEO_0000

' DORNERWORKS

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

for (1 = @; i < ARRAY_SIZE(guest_fake_devices); i++) {
vm_memory_reservation_t xreservation = vm_reserve_memory_at{&wm, guest_fake_devices[i].base, guest_fake_devices[i].size,
default_error_fault_callback, (veid =)}NULL);

static memory_range_t guest_ram_regions[] = {
/% Allocate all the standard low memory areas =/

n " : HEad N : L - id : : ccal
/% On x86 the BIDS loads the MBR to @x7c@@. But for this VMM, ZF_LOGF_IF(!reservation, "Failed to create guest device reservation at %p", (void =)guest_fake_devices[i].base);

* we don't use MBR, so there is no need to exclude the MBR error = map_frame_alloc_reservation(&vm, reservation);

+ bootstrap code region *; ZF_LOGF_IF(error, "Failed to map guest device reservation at %p", (void *)guest_fake_devices[i].base);
{0x500, @xs@0e08 - @xsee},

{0x80000, Ax9fcPd - OxBoAAA},

static memory_range_t guest_fake_devices[] = { /¥ Do we need to do any early reservations of guest address space? x*/
{pxfooee, Bx // DMI for (1 = @; i = ARRAY_SIZE(guest_ram_regions}); i++) {
{@xcPeee, Bxc80e@ - Axceeee}, // VIDED BIOS

error = vm_ram_register_at(&vwm, guest_ram_regions[il.base, guest_ram_regions[i]l.size, false};
{@xcaoea, paa 8@}, // Mapped hardware and MISC

ZF_LOGF_IF({error, "Failed to alloc guest ram at %p", (void =)guest_ram_regions[i].base);

' DORNERWORKS

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

f+ Allocate guest ram. This 1s the main memory that the guest will actually get

* told exists. Other memory may get allocated and mapped into the guest */

bool paddr_is_vaddr;

paddr_1is_vaddr = false;

// allocate guest ram in 512MiB chunks. This prevents extreme fragmentation of the

// physical address space when a large amount of guest RAM has been reugested.

// An important side affect is that if the requested RAM is large, and there are

// devices or other regions in the lower 4GiB of the guest address space then we will

ff still allocate some RAM in the lower 4GiB, which a guest may require to run correctly.

size_t remaining = MiB_TO_BYTES{guest_ram_mb);
while (remaining > 8) {
size_t allocate = MIN(remaining, MiB_TO_BYTES(512));
uintptr_t res_addr = vm_ram_register{&vm, allocate);
ZF _LOGF_IF('res_addr, "Failed to allocate %lu bytes of guest ram. Already allocated %lu.",
(longlallocate, (long)(MiE_TO_BYTES(guest_ram_mb) - remaining));
remaining — allocate;

V' DORNERWORKS =

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

rarrarrarrrarraarrar

OO OO0

.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]

BIOS-provided physical RAM map:

BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:

[mem
[mem
[mem
[mem
[mem
[mem

Ox00000000000000 00 -0x00VVVRRRATT] reserved
OxX0000000000000500-0x000RVLRITbTT] usable
OxX000000000009fCcO0-0x00VVRV100R2fff] reserved
OxX0000000010003000-0x000RV30002fff] usable
Ox0000000030003000-0x00PPRVRRT T fff] reserved
Ox0000000100000000-0x00PVVA 15 fff] usable

V' DORNERWORKS

13

Checklist

o Emulate necessary hardware resources

o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

V' DORNERWORKS =

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Emulate necessary hardware resources

o On x86, there are (usually) 4 available timers:
e PIT
e HPET
 LAPIC Timer
e TSC

NV DORNERWORKS

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Emulate necessary hardware resources

o On x86, there are (usually) 4 available timers:
PIT
HPET
LAPIC Timer
TSC

' DORNERWORKS

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Emulate necessary hardware resources

o On x86, there are (usually) 4 available timers:
« PIT
e HPET
LAPIC Timer
e TSC

o Userspace VMM connects to TimeServer component to set absolute timeouts
o Timeserver is backed by either the physical PIT or the HPET hardware
o MMIO/IOPort Emulation sets timeouts for Linux

o Linuxuses the PIT/HPET to calibrate TSC, and for system tick IRQ

[1.855732] clocksource: Switched to clocksource tsc

' DORNERWORKS

Checklist

Provide S > (ARM)-or EPT{x86) Franstat
o—Emulate necessary-hardwareresources

o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

' DORNERWORKS

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Handle guest faults and events

o Lots of expected faults the VMM handles: [EX

[EX

EPT Violations [EX

[EX

o Let’s follow the EPT Violation Path:
1.

2
3
4.
5
6

MSR Reads/Writes -

Get EPT Violation Physical Address and R/W

Read the faulting instruction (e.g 0x44 0x8b 0x20 == mov r12d, [rax])
Decode the instruction to determine which register to read from/write to
Call a fault handler (LAPIC Emulation)

Get/Set the Fault Data (decodes the Instruction again)

Set the Instruction Pointer to the next instruction

[Ex
[EX

[EX

static vm_exit_handler_fn_t xB6_exit_handlers [VM_EXIT_REASON_NUM] = {
IT_REAS
(IT_REAS
IT_REAS
(IT_REAS
IT_REAS
(IT_REAS
XIT_REAS

CPUID Calls e
[EXIT_REAS
IT_REAS

XIT_REAS

OM_PENDING_INTERRUPT] = wm_pending_interrupt_handler,
OM_CPUID] = vm_cpuid_handler,

OM_MSR_READ] = vm_rdmsr_handler,

ON_MSR_WRITE] = vm_wrmsr_handler,

ON_EPT_VIOLATION] = vm_ept_violation_handler,

OM_CR_ACCESS] = vm_cr_access_handler,

OM_IO0 _INSTRUCTION] = wm_io_instruction_handler,
ON_HLT] = wvm_hlt_handler,

ON_VMX_TIMER] = vm_vmx_timer_handler,
OM_VMCALL] = vm_vmcall_handler,

V' DORNERWORKS

Linux CAMKES-VM “Dependencies”

* Hypervisor Requirement: Handle guest faults and events

static const struct decode_table decode_table_lop[]l = {

[@ ... MAX_INSTR_OPCODES] = {DECODE_INSTR_INVALID, decode_invalid_op},
[BxBRE] {DECODE_INSTR_MOV, decode_modrm_reg_op},

[x89] {DECODE_INSTR_MOV, decode_modrm_reg_op},

[8x8a] {DECODE_INSTR_MOV, decode_modrm_reg_op},

[@x8b] {DECODE_INSTR_MOV, decode_modrm_reg_op},

[@xBc] {DECODE_INSTR_MOV, decode_modrm_reg_op},

[@xcE] {DECODE_INSTR_MOV, decode_imm_op},

[Bxc7] {DECODE_INSTR_MOV, decode_imm_op}

static const struct decode_table decode_table Zop[]l = {
[@ ... MAX_INSTR_OPCODES] = {DECODE_INSTR_INVALID, decode_invalid_op},
[ex6f] = {DECODE_INSTR_MOVQ, decode_modrm_reg_op}

' DORNERWORKS »

Checklist

Provide S > (ARM)-or EPT—{x86}F i
o—Emulate necessary-hardwareresources
o—Handleguestfaultsand-events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

' DORNERWORKS 2

Linux CAMKES-VM “Dependencies”

o Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread

o Example: Virtio-Net
1. selL4 emulatesthe PCl Bus
2. sel4 places avirtio-net device on the PCI bus, accessed via IOPorts

3. 10 Port handlers read virtio-net descriptors and route packet to destination via virtqueues

o Linuxisreally flexible!
* Supports legacy and modern VirtlO interfaces
* Reads access information from a PCl scan

* Cansupport either 0 Ports or MMIO access

' DORNERWORKS »

Summary

©)

The CAmKES VM for x86 was specifically built around running Linux as a VM

The Memory Configuration, VCPU Initialization, Hardware Emulation, and VirtlO all assume a Linux guest

However, Linuxisn’t the only Operating System out there

The CAmKES-VM should also support other Operating Systems

VxWorks
RTEMS

Deos

V' DORNERWORKS

23

What are DO-178C & Design Assurance Levelse

Design Assurance

o DO-178C, Software Considerationsin
Airborne Systems and Equipment
Certification is the primary document by
which the certification authorities such as the
FAA approve all commercial software-based
aerospace systems.

Failure may cause < 1 x 10%5 /
stress, injuries flight-hr

o Design Assurance Levels (DAL)

Level C - Major

. Backup Systems
* Determined from safety assessment and hazard

analysis

o What about formal methods?

* DO-333 discusses using formal methods to certify
against DO-178C

V' DORNERWORKS

What is Deos¢

o Certified, Safety-Critical RTOS developed by DDC-I
« High performance, Multicore
* Supports ARM, x86, PPC
* Conformsto FACE Technical Standard v3.1

o Verifiable to DO-178C Design Assurance Level (DAL) A since 1998

o Enables time, space, and resource partitions
* Like sel4, it uses user mode drivers, making it easy to build a driver to the DAL required
 All1/Ois not required tobe DAL A
* DAL-A Linker/Loader for Binary Modularity
* Enables software reuse & certification

* Each application and library has a DAL with a full certification package

' DORNERWORKS

What is Deos¢

o Unmatched record of deployment,
support, and certification

Application 2 User Mode Device Drivers

 >10,000 aircraft
* >10,000,000 flight hours
* >40 aircraft types

e >100 certifications

o Performance

* Multicore - Safe Scheduling, Cache
Partitioning

* Quick boot up times

' DORNERWORKS

Deos Certification Process

“Plan for Software Aspects of Certification for DDCI Software” (PSAC) DDCIDOC1
“Deos Software Component Descriptions” (DEOSDOC1a) DEOSDOC1a
“DDCI Additional Considerations Document” (DDCIDOC1b) DDCIDOC1b
“Software Development and Verification Plan for Software” (SDVP) DDCIDOC2
“Software Configuration Management Plan for DDCI Software” (SCMP) DDCIDOC3
“Software Quality Assurance Plan for DDCI Software” (SQAP) DDCIDOC4
T [h [h
The following components > Sections2 & 3 > Component 1
are described in DEOSDOCla: .
.C1 Component descriptions are Component 2
.C2 provided in DEOSDOC1a.
e é| e

' DORNERWORKS

Deos Software Life Cycle (DSLC)

V1 VF1 V2 VF2 V3 VF3
A 4
Software Requirements | D1 Software D2 , Software
and Design » Coding »| Integration | Testing
2.1.1 2.1.2 E 2.1.3 o~ 2213
DF1 DF2 TF3 2.1,
N\ A
T1 TF1 TF6
Test Case T2 Test Procedure
Definition < Definition
2.21.1 - 2.21.2
V5 VF5 Vo6 VF6 .
:
>

V' DORNERWORKS

Deos Test Environment

Traceability
Analysis

Trace Matrix

>

Raw
Trace
Data

Workstation

Control
TS T T s s s e
:
Software, \ 4
Test Procedure
& Test Registry Test
Fixture
Test Results
(including raw
coverage data)
Processed
Coverage
bata Software
Coverage
Analysis
Raw
Coverage
Data

V' DORNERWORKS

29

Godl:

o Two VM Configuration
0 DeOS+ Linux Hello World
* Deos uses QEMU-x86_64 Platform
ARINC 653
o VirtlO Network Channel between VMs
* Network bridge ensures Deos has access to external _ virtio-net | network-bridge
network Deos
o Any changes we make to the CAmMKES-VM need to be selL4
backwards compatible!
Eth t
* And should be expandable for other Operating Systems x86 Hardware ohe

o Allows for general purpose applications to run in Linux
alongside DAL certified applications running in Deos

' DORNERWORKS =

Checklist

o Provide Stage 2 (ARM) or EPT (x86) Translations
o Emulate necessary hardware resources
o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

' DORNERWORKS ::

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

o Deos Requirement: Static Memory Map from 0x0 -> 0x4000_0000

V' DORNERWORKS >

Adding Deos Support to CAMKES-VM

©)

@)

©)

Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations
Deos Requirement: Static Memory Map from 0x0 -> 0x4000_0000

Problem: x86 CAmKES-VM uses anonymous memory regions for guest RAM

e €820 Map allows memory to be “anywhere”
Solution: ARM CAmKES-VM already provides static memory maps using the “vm_ram_register_at” functions

Still need to provide a method for the VMM to specify a memory range, instead of a “guest_ram_mb” parameter

V' DORNERWORKS

33

Adding Deos Support to CAMKES-VM

vmB .vm_address_config = {
"ram_base" : VAR_STRINGIZE (VM_RAM_BASE),
"pam_paddr_base" : VAR_STRINGIZE(VM_RAM_BASE), typedef struct {
"pam_size" : VAR_STRINGIZE (VM_RAM_SIZE),
"high_ram_size" : VAR_STRINGIZE(Ox1800),
"kernel_addr" : VAR_STRINGIZE(VM_KERNEL_ADDR),
"initrd_addr" : VAR_STRINGIZE(VM_INITRD_ADDR), vm_ram_t high_ram;

vm_ram_t low_ram;

b

_ . vintptr_t kernel_addr;
vmd.vm_image_config = { vintptr_t kernel_align;

"kernel_name" : "deosBoot.exe", } o
ukernel relocs name” : " vintptr_t initrd_addr;
*initrd_name" : "composite.darc", vintptr_t guest_ram_mb;

"kernel_cmdline" : DEOS_CMDLINE,

"map_one_to_one" : false, . R
p'. T bool provide_initrd;
"provide_initrd": true,

wjs 1inux": false, bool map_one_to_one;

"is_deos": true,

V' DORNERWORKS 3

Adding Deos Support to CAMKES-VM

IF VM == Linux:
vm_ram _register // Pulls from anon regions
find _large region(&addr)

ELSE IF VM == Deos:
vm_ram_register at // Specifies region to map

addr = vm_config.kernel addr

vm_load guest kernel(addr)

' DORNERWORKS 3

Adding Deos Support to CAMKES-VM

o Linuxuses the boot_info struct

* Tells Linux crucial boot information, including kernel, ramdisk, memory,
and command line

o Deos expects to be booted from a Multiboot compliant bootloader

» Therefore, Deos needs a multiboot struct in its initial memory

e Contains much the same information as Linux boot_info struct

o Libraries modified to search for multiboot header in first 2048 bytes of
kernel image

context.
context.
context.
context.
context.

eax
ebx
BCX
edx
esi

MULTIBOOT_BOOTLOADER_MAGIC;
guest_boot_info_addr;

mw n mw n
= o o
- W

V' DORNERWORKS

36

Checklist

o Emulate necessary hardware resources

o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

' DORNERWORKS 3

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Emulate necessary hardware resources

o Deos Requirement: QEMU-x86_64 Platform needs the LAPIC Timer

' DORNERWORKS 3

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Emulate necessary hardware resources

o Deos Requirement: QEMU-x86_64 Platform needs the LAPIC Timer

o Problem: seL4 does NOT support the LAPIC timer

o Solution: Leverage the Open-source Community and pullin a LAPIC Timer PR

o Initialize timers based on VM Configuration

V' DORNERWORKS

39

Adding Deos Support to CAMKES-VM

f*- if vm_timer_config -/

.timers = {
-use_pit = /%? vm_timer_config.get('use_pit') ?x/,
bool UEE-hpEt: .use_hpet = /%? vm_timer_config.get('use_hpet') %/,

i = fed . . , -,
hoal use_pit: \ .use_lapic = /#? vm_timer_config.get('use_lapic') ?%/,

typedef struct vm_timers {

bool use_lapic;
} vm_timers_t; /*- else -*/

.timers = {

vm@ . vm_timer_config = { .use_pit = true,
. #ifdef CONFIG_VMM_USE_HPET
"use_pit": false,

.use_hpet = true,

"use_hpet": false, #else
"use_lapic": trve, .use_hpet = false,
#endif
}; .use_lapic = false,
s
/*- endif -x/

' DORNERWORKS «

Adding Deos Support to CAMKES-VM

IF VM _Config.PIT:
pit _init()

IF VM_Config.HPET:
hpet_init()

IF VM _Config.LAPIC:

lapic _init()

N\ DORNERWORKS +

Checklist

Provide S > (ARM)-or EPT{x86) Franstat
o—Emulate necessary-hardwareresources

o Handle guest faults and events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

' DORNERWORKS +

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Handle guest faults and events

o Deos Requirement: Handle (extra) guest faults and events

o Deos’s EPT violations required adding support for 2 extra MOV instructions, and fixing the MOV_IMM emulation

* EPT Violations were ignoring the Immediate value, so the LAPIC wasn’t properly initialized

' DORNERWORKS <+

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Handle guest faults and events

o Deos Requirement: Handle (extra) guest faults and events

o Deos’s EPT violations required adding support for 2 extra MOV instructions, and fixing the MOV_IMM emulation

* EPT Violations were ignoring the Immediate value, so the LAPIC wasn’t properly initialized

decode an i1nstruction for a

. It can break 1n many ways. */

' DORNERWORKS

Adding Deos Support to CAMKES-VM

©)

QEMU to therescue!

QEMU has an x86 decoder and emulator pulled in from the Veertu Hypervisor

Supports decoding all x86 OPCodes

Ported the decoder and emulator for use in the seL4 VMM Libraries

Emulatorrequired a bit more porting to integrate with EPT Violation path

EPT Violations just require the register to read from / write to, and sometimes an immediate value

V' DORNERWORKS

45

Adding Deos Support to CAMKES-VM

/* For an EPT Read Violation, the value at the faulting address is stored in the
* register, so we need to check op[8]. For an EPT Write Violation, the destination
* is the faulting address, and the source is either a register or an immediate value.
* Either way, we need to check op[1].
*/
if (is_vcpu_read_fault(env)) {
assert(decode->op[0]).type == XB&_VAR_REG);
decode->reg = decode->op[@].reg;
} else {
if (decode->op[1].type == X8&6_VAR_IMMEDIATE) {
decode->value = decode->op[1].val;
decode->use_value = true;
} else if (decode->op[1].type == X8&6_VAR_REG) {
decode->reg = decode->op[1].reg;
} else {
ZF_LOGF("Handle type %d", decode->op[1].type);

' DORNERWORKS

Checklist

Provide S > (ARM)-or EPT—{x86}F i
o—Emulate necessary-hardwareresources
o—Handleguestfaultsand-events

o Optionally, create interfaces between VMs or a VM and an selL4 Thread (VirtlO)

NV DORNERWORKS +

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread (VirtlO)

o Deos Requirement: The QEMU-x86_64 Deos Target needs a Virtio Ethernet Device

' DORNERWORKS

Adding Deos Support to CAMKES-VM

o Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread (VirtlO)
o Deos Requirement: The QEMU-x86_64 Deos Target needs a Virtio Ethernet Device
o Deos has avirtio-net library, and VirtlO is a standard, so it should drop into place

o Two Problems:
1. Deos assumes a Modern VirtlO Backend

2. Deos uses MMIO regions to access the VirtlO Backend

' DORNERWORKS «

Adding Deos Support to CAMKES-VM

o Solution #1: The Deos Library can be configured to use Legacy VirtlO

v [3] virtio-net/code/virtio_ethernetif.cpp [}

- @@ -457,7 +457,7 @@ vint8_t lwip_driver_init(void #netifp)

457 457 * Ref: 1wIP's virtio-net driver, deos-virtio.cpp::deos_virtio_net_open()
458 458 * TODO: Justify magic number offsets.

459 459 */

460 1;

- virtio_net_sc.vio_dev.is_modern =
4680 + wirtio_net_sc.vio_dev.is_modern = B;

' DORNERWORKS s

Adding Deos Support to CAMKES-VM

o Solution #2: We can modify selL4 VirtlO backend to support MMIO access

o common_make_virtio_net_mmio
* Does all VirtlO initialization

* Create EPT Fault handler for specified MMIO region

0x0
. PCI HOST FEATURES
» Uses same VirtlO offsets -

0x4
PCI_GUEST_FEATURES

EPT Violation: OxFE00000C

0x8
PCI_QUEUE_ PFN

0xC
IO Port Access: 0x100C > PCI_QUEUE_ SEL

OxE
PCI_QUEUE_NOTIFY

0x10
PCI_STATUS

' DORNERWORKS s

Checklist

' DORNERWORKS >

Deos Output

Hello, World! System Tick = 18740
Partition restart counter : 12

Periodic Loop Count : 37
Aperiodic Loop Count: 125
653 Time : 368A7EDD60

ACT:4E9 rx:223 tx:2F2 drop:0 TICK: 4934
if:10:127.0.0.1/8 if:v1:192.168.19.100/24 Deos 1 core

' DORNERWORKS s

Deos Output

Components Kernel Files = Iwip. confg = gemu-x86_64.timemap * -0
'W‘III I IJI I W“ HHH W I (T IIMI ' II wIIII I IIIIIII (T '|I IWIII “II IIIIII" I~ system Events
mainThreadTemplate [0x90000] «
II IIIII I) LWV 1 (i (A AN II IIIIII I IIIIII T UETT demo653- |d|e[0l;,(90001]de05Id|
| I | “ PrimaryThread [0x1090000] hellc
gdbserverPrlmary [0x2090000]
I IIII periadic [0x319000000000000;
Il I Periodic [0x319000000000001] d
(AR (AL ‘ ‘ | IIII I 11} HI (i ‘ (R RrF LR Il IH‘ 1l ‘ “I 653_IDLE [0x31900000000ffff] de
Iwip_main [0x4090000] lwip.exe
IIIII A IIIIIIIIIIIIIIIII I II IIII I|IIII A ORI A IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII [IIIIIIIIIIIIIIII III|I|IIIIIIIIIIIII (T [oxgogoom[] IW|pexe] a
[0x4090002] Iwip.exe
[0x4090003] |wip.exe
({1l I | [0x4090004] Iwip.exe
[0x4090005] IW|p exe
[0x4090006] |wip.exe
653 Processes Threads Exceptions Schedulers ProcessEvents
653Partitions g53Processes 6530bjects 653HealthMonitor
Select Quotas
O Initial Quotas O Remaining Quotas @ Both Values
Partition Qu... Partition Ha... Partition Name .EXE Name Identifier Lock Level Operating ... Start Conditi... 653 Processes Stack Space Sampling
1 Initial 0x3070000 demo653 demo653.exe 1 0 NORMAL PARTITION_... 2 32768 B 0
2 Remaining 0x3070000 demo653 demo653.exe 1 0 NORMAL PARTITION_... 0 24576 B 0

V' DORNERWORKS

54

How would this system e certified?

o Goal: Reuse existing Deos certification artifacts

o First consideration: The Hypervisor itself would need to be certified

* RTCA DO-333 Formal Methods Supplement to DO-178C and DO-278A provides guidance to software developers wishing to use
formal methods in the certification of airborne systems [1]

* ForselL4, Hypervisor Configurations would need to be certified
* AARCH®64 has Hypervisor Mode verified
* x86, RISC-Vdo not

* Assuming selL4 has the proper verified configurations, the VMM must also have certification artifacts

' DORNERWORKS s

How would this system e certified?

o Second consideration: The Hypervisor itself needs to provide as close to an identical execution environment as
possible

* MCS Configuration would be a must!

* Can give VM 100% of Core Execution. No round-robin scheduling tick
* Any servers would need to exist on secondary cores

* This would include VirtlO processing
* Need to consider the effects of the cache

* Deos has a patented cache coloring method to prevent interference in multicore environments

' DORNERWORKS s

How would this system be certified?

Linux

o Guest memory is backed with “random” untyped pxdoone pacooo0ee
O bj e Cts 0x41000 0x10001000
0x42000 ////’—‘\\\\ 0x10002000

MMU is used to gi h VM a standard add M
o Is used to give eac a standard address 0x600000 v 0x10003000
S pa Ce 0x601000 0x10004000
* VMs are free to virtualize their own memory 0602000 BRAGERRRV

o VM’s running simultaneously on different cores can —_—
still share a cacheline 0x43000 0x10000000

* This can force the processor to walk the MMU tables, Ox44000 0x10001000
effecting the Worst Case Execution Time (WCET) of VM 0x45000 ‘(m\ 0x10002000
a pplicatio ns 0x603000 'U 0x10003000

0x604000 0x10004000

o Solution: provide known untyped objects to back
guest memory

0x605000 0x10005000

* Allows VMs to use theirown cache coloring mechanisms

' DORNERWORKS s

System Certification Summary

O

@)

O

Start with formally verified seL4 Hypervisor configuration

» Use DO-333 framework to provide certification arguments for the seL4 Kernel
Update userspace VMM and provide certification documentation
Provide testing to prove minimal execution environment differences for Deos guest

Reuse Deos certification artifacts

V' DORNERWORKS

58

What Conclusions Can We Draw?e

©)

©)

O

The CAmKES-VM is capable of running non-Linux guests

Certification of seL4 Hypervisor based systems is possible with the right amount of funding

Current gaps:
» Verified Hypervisor configurations for x86_64 and RISC-V
» Verified configurations for Multicore & MCS

» Certification artifacts for userspace VMM

This setup would allow certified guests like Deos to re-use their certification artifacts when running underneath the

selL4 Hypervisor

V' DORNERWORKS

59

Questions?

' DORNERWORKS <

	Slide 1: Running Certified Operating Systems under the seL4 Hypervisor
	Slide 2: Agenda
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Guest State Post VMM Initialization
	Slide 7: What Operating Systems has the CAmkES-VM Run?
	Slide 8: What Operating Systems has the CAmkES-VM Run?
	Slide 9: Checklist
	Slide 10: Linux CAmkES-VM “Dependencies”
	Slide 11: Linux CAmkES-VM “Dependencies”
	Slide 12: Linux CAmkES-VM “Dependencies”
	Slide 13: Linux CAmkES-VM “Dependencies”
	Slide 14: Checklist
	Slide 15: Linux CAmkES-VM “Dependencies”
	Slide 16: Linux CAmkES-VM “Dependencies”
	Slide 17: Linux CAmkES-VM “Dependencies”
	Slide 18: Checklist
	Slide 19: Linux CAmkES-VM “Dependencies”
	Slide 20: Linux CAmkES-VM “Dependencies”
	Slide 21: Checklist
	Slide 22: Linux CAmkES-VM “Dependencies”
	Slide 23: Summary
	Slide 24: What are DO-178C & Design Assurance Levels?
	Slide 25: What is Deos?
	Slide 26: What is Deos?
	Slide 27: Deos Certification Process
	Slide 28: Deos Software Life Cycle (DSLC)
	Slide 29: Deos Test Environment
	Slide 30: Goal:
	Slide 31: Checklist
	Slide 32: Adding Deos Support to CAmkES-VM
	Slide 33: Adding Deos Support to CAmkES-VM
	Slide 34: Adding Deos Support to CAmkES-VM
	Slide 35: Adding Deos Support to CAmkES-VM
	Slide 36: Adding Deos Support to CAmkES-VM
	Slide 37: Checklist
	Slide 38: Adding Deos Support to CAmkES-VM
	Slide 39: Adding Deos Support to CAmkES-VM
	Slide 40: Adding Deos Support to CAmkES-VM
	Slide 41: Adding Deos Support to CAmkES-VM
	Slide 42: Checklist
	Slide 43: Adding Deos Support to CAmkES-VM
	Slide 44: Adding Deos Support to CAmkES-VM
	Slide 45: Adding Deos Support to CAmkES-VM
	Slide 46: Adding Deos Support to CAmkES-VM
	Slide 47: Checklist
	Slide 48: Adding Deos Support to CAmkES-VM
	Slide 49: Adding Deos Support to CAmkES-VM
	Slide 50: Adding Deos Support to CAmkES-VM
	Slide 51: Adding Deos Support to CAmkES-VM
	Slide 52: Checklist
	Slide 53: Deos Output
	Slide 54: Deos Output
	Slide 55: How would this system be certified?
	Slide 56: How would this system be certified?
	Slide 57: How would this system be certified?
	Slide 58: System Certification Summary
	Slide 59: What Conclusions Can We Draw?
	Slide 60: Questions?

