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Memory
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What is Time Protection?

e (OSes typically implement memory protection.

e But: Mere memory access changes
microarchitectural state — this affects timing.
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What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,
OSes can implement time protection: Memory

See EuroSys: [Ge et al. 2019]

e Partition off-core memory caches

L2 cache
(Partitionable)
L1 + other
on-core state -
(Flushable)
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What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,
OSes can implement time protection: Memory

See EuroSys: [Ge et al. 2019]

e Partition off-core memory caches

e [/ush on-core and non-architected state
and pad time on context switch

L2 cache
(Partitionable)
L1 + other
on-core state -
(Flushable)
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 U!Y\QW



What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable)

L1 + other
on-core state I]]
(Flushable)
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What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable) I:I:.

L1 + other 0S switch
on-core state from T 10 S
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.
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What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable) I:I:.
L1 + other

on-core state - S is running
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.
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microarchitectural state — this affects timing.
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What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

e sel4 OS kernel’s enforcement of time protection: (Partitionable) I:I:.
 |mplemented, evaluated empirically on ARM, x86

See EuroSys: [Ge et al. 2019] L1 + other OS switch
on-core state - from Sto T
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN,SEW



What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

 sel4 OS kernel’s enforcement of time protection: (Partitionable) I:I:.

 |mplemented, evaluated empirically on ARM, x86

. L1 + other .
See EuroSys: [Ge et al. 2019] 0S switch
, on-core state
e Ported to RISC-V with hardware support (Flushable) fromStoT
See arXiv preprint: [Buckley, Sison et al. 2023]
HW support: [Wistoff et al. 2023] “Flush”: Write fixed content; wait up to fixed time.
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@selg Verification status O=r

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

Verify inter-service/client
communication protocols

« Verify devices i
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘

1B

Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver)  =: (e.g.virtualiser) =

library interface

syscall interface

Time
Protection
incl. time protection
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@selg \erification status

<:3 Verify g
compositionally
X 0=

<:z Verify %
<:z Verify L) =

Cz Verify Q / g

Time
Protection
incl. time protection
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Proving seL4 implements Time Protection (==

sel4 Kernel

Confidentiality

incl. time protection

lllllllllllllllllllllllllllllllllllllllllllllllll

&
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Proving seL4 implements Time Protection (==

selL4 Kernel <:z FM'23: Defined for OS kernels J

Confidentiality

incl. time protection

lllllllllllllllllllllllllllllllllllllllllllllllll

&
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Proving seL4 implements Time Protection (==

selL4 Kernel <:z FM'23: Defined for OS kernels /

Confidentiality [HE
incl. time protection ﬂ Verify for abstract model Q

llllllllllllllllllllllllllllllllllllllllllllllll

&
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Proving seL4 implements Time Protection (==

sel4 Kernel

 Abstract model (ASpec) checks fouched addresses (TA) set

&
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Proving seL4 implements Time Protection (==

sel4 Kernel

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)

oo
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Proving seL4 implements Time Protection (==

lllllllllllllllllllllllllllllllllllllllllllllllll

selL4 Kernel : Noninterference <:z FM'23: Defined for OS kernels J
..................................... P——
InfoFlow 4

incl. time protection

TA

ﬂ Verify for abstract model Q

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]
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Proving seL4 implements Time Protection (==

S R i< { Fm23: Defined for OS kemels o
—4 .
InfoFlow

ﬂ Verify for abstract model Q

incl. time protection

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]
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Proving seL4 implements Time Protection (=

lllllllllllllllllllllllllllllllllllllllllllllllll

Noninterference <:3 FM'23: Defined for OS kernels J

TA

ﬂ Verify for abstract model Q

incl. time protection

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]
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Proving seL4 implements Time Protection (==
selL4 Kernel \ -SGCUntypohcy<:z FM'23: Defined for OS kernels J

....................................... P——
TA ASpec Alnvs 4 " Access 4 InfoFlow‘ ;

refinement + ? ﬁ ﬂ Verify for abstract model Q

/N ExecSpec

incl. time protection

llllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllll

1 Noninterference Refinement

% InfoFlowC

--------------------------------------------------

refinement

=X Update refinement Q /‘

TA”

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

(2B + 2C) Refinement: TA” ¢ TA' ¢ TA ? (via ExecSpec)

]
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Proving seL4 implements Time Protection (=
selL4 Kernel \ -SGCUntypohcyc:z FM'23: Defined for OS kernels J

....................................... P——
TA ASpec Alnvs 4 " Access 4 InfoFlow‘ ;

refinement + ? ﬁ ﬂ Verify for abstract model Q

/N ExecSpec

incl. time protection

llllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllll

1 Noninterference Refinement

% InfoFlowC

--------------------------------------------------

refinement

=X Update refinement Q /‘

TA”

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

(2B + 2C) Refinement: TA” ¢ TA' ¢ TA ? (via ExecSpec)

« Modulo: Detail on addresses added by refinement to CSpec

]
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@selg Verification status O=r

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

Verify inter-service/client
communication protocols

« Verify devices é
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘
: « FM'23: Defined for OS kernels J

28 Verify for abstract model Q

1B

Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver)  =: (e.g.virtualiser) =

library interface

syscall interface

TI me =% Update refinement Q / ‘
Protection
A& \/erify for C implementation Q / ‘
incl. time protection
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Q=ei4 Verification status

. < ( FM'23: Defined for OS kernels J

28 Verify for abstract model Q

TI me =% Update refinement Q / ‘
Protection
A& \/erify for C implementation Q / ‘
incl. time protection
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Verification status

. < ( FM'23: Defined for OS kernels J

Time
Protection
incl. time protection
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Verification status

: < { FM'23: Defined for OS kernels J

28 Verify for abstract model Q

(Separation kernel
policy only)

TI me =X Update refinement Q / ‘
Protection
ZI6X \/erify for C implementation Q / ‘
incl. time protection Impleme_nt and verify fo_r ‘
cross-domain communications
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@stlq Verification status ™ O

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

1B Verify inter-service/client
communication protocols

« Verify devices g
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J
« Verify Microkit-facing spec Q / ‘
: « FM'23: Defined for OS kernels J

28 Verify for abstract model Q

=X Update refinement Q /‘
I \/erify for C implementation Q / ‘
Implement and verify for

cross-domain communications ‘
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Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver)  =: (e.g.virtualiser) =

library interface

syscall interface

(Separation kernel
policy only)

Time
Protection

incl. time protection
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