School of Computer Science & Engineering

GL%%? - Trustworthy Systems Group

Verification Status of Time Protection
and Microkit-based OS Services

Dr Rob Sison

Senior Research Associate, UNSW Sydney
r.sison@unsw.edu.au

@54 The verified seL4 OS microkernel O

Confidentiality Availability

Security
Enforcement Arm 32
RISC-V 64

Arm 32/64

RISC-V 64

Functional
Correctness X86 64

C implementation

Translation
Correctness Armv/

RISC-V

oo

2 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

The verified seL4 OS microkernel O

Security
Enforcement Arm 32
RISC-V 64

Arm 32/64

Cunctional RISC-V 64
unctiona 86 64

Correctness

seL4: World's first
OS kernel with S .
correctness proof! C implementation

Translation
Correctness Armv/

RISC-V

]

2 Verification Status of Time Protection and Microkit-based OS Services, Oct’24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

@4 The verified seL4 OS microkernel O

Confidentiality Availability

Security
Enforcement Arm 32
RISC-V 64

Arm 32/64

Cunctional RISC-V 64
unctiona 86 64

Correctness

seL4: World's first
OS kernel with S .
correctness proof! C implementation

Translation
Correctness Armv/

RISC-V

2 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

°.‘iﬂ|4 Two frontiers for verifying seL4-based systems O-m'

syscall interface

selL4 OS microkernel

Abstract Model Confidentiality

C implementation

&
»*
2
*

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 U UNSW

°.‘i£.|4 Two frontiers for verifying seL4-based systems OTE

syscall interface

selL4 OS microkernel
Abstract Model Confidentiality

refinement l

C implementation Confidentiality

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

°.‘iﬂ|4 Two frontiers for verifying seL4-based systems O-m'

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

' incl. time protection
Time refinement l °
Protection
C implementation Confidentiality
3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 E: UNSW

°£ﬂ|4 Two frontiers for verifying seL4-based systems O'm'

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

TI me refinement ,
Protection ' : :

. C implementation Confidentiality

incl. time protection

3 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :E: UNSW

°.‘iﬂ|4 Two frontiers for verifying seL4-based systems O-m'

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

TI me refinement
Protection : :
. C implementation Confidentiality E
incl. time protection
3 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :E: UNSW

’8&'4. Two frontiers for verifying seL4-based systems Om'

Microkit-based
OS Services

library interface

seL4 Microkit Library

selL4 OS microkernel

syscall interface

Abstract Model | . Confidentiality

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

°.‘il‘.|4 Two frontiers for verifying seL4-based systems O-m'

Microkit-based G service 108 semice
OS Services i (e.g.driver) 1! (eg.virtualiser) i -

library interface

seL4 Microkit Library

syscall interface

seL4 OS microkernel _
Abstract Model | " Confidentiality F

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

O.‘il‘.|.4 Two frontiers for verifying seL4-based systems Om'

System built on sel.4 Microkit-based OS (e.g. Lions 03)

Client Client
(e.g. Linux VM) (e.g. IP stack)
Microkit-based : OSservice :: OSservice :
OS SerV|CeS - (e.g.driver) =: (e.g.virtualiser) = -

library interface

selL4 Microkit Library

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

O.‘il‘.|.4 Two frontiers for verifying seL4-based systems Om'

System built on sel.4 Microkit-based OS (e.g. Lions 03)

Client Client
(e.g. Linux VM) (e.g. IP stack)
Microkit-based : OSservice :: OSservice :
OS SerV|CeS - (e.g.driver) =: (e.g.virtualiser) = -

library interface

selL4 Microkit Library

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

3 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

@selg \erification status

System built on sel.4 Microkit-based OS (e.g. Lions 03)

Client Client
(e.g. Linux VM) (e.g. IP stack)
Microkit-based : OSservice :: OSservice :
OS SerV|CeS : (e.g.driver) i: (e.g.virtualiser) i -

library interface

seL4 Microkit Library

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

4 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

@selg \erification status

System built on sel.4 Microkit-based OS (e.g. Lions 03)

Client Client
(e.g. Linux VM) (e.g. IP stack)
Microkit-based : OSservice :: OSservice :
OS SerV|CeS : (e.g.driver) i: (e.g.virtualiser) i -

library interface

seL4 Microkit Library

syscall interface

selL4 OS microkernel

Abstract Model | . Confidentiality

Time refinement
Protection

. C implementation Confidentiality

incl. time protection

4 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

@selg \erification status

System built on sel.4 Microkit-based OS (e.g. Lions 03)

Client Client
(e.g. Linux VM) (e.g. IP stack)
Microkit-based : OSservice :: OSservice :
OS SerV|CeS - (e.g.driver) =: (e.g.virtualiser) = -

library interface

selL4 Microkit Library

syscall interface

selL4 OS microkernel

Abstract Model

4 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-facing OS kernel interface o=

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q / ‘

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-facing OS kernel interface o=

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

seL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q / "

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

* Non-blocking cases: Straightforward Q

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verity Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

* Non-blocking cases: Straightforward Q

* e.g.selL4 Recv returns immediately

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verity Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

* Non-blocking cases: Straightforward Q

* e.g.selL4 Recv returns immediately

* Prove Hoare triple over single kernel entry/exit

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

» Non-blocking cases: Straightforward £Q » Blocking cases: Tricky %S

* e.g.selL4 Recv returns immediately

* Prove Hoare triple over single kernel entry/exit

&
»*
2
*

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 U UNSW

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

» Non-blocking cases: Straightforward £Q » Blocking cases: Tricky %S

* e.g.sel4_Recv returns immediately « e.g.selL4 Recv blocks waiting for seL4_Call

* Prove Hoare triple over single kernel entry/exit

Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :E: UNSW

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

» Non-blocking cases: Straightforward £Q » Blocking cases: Tricky %S

* e.g.sel4_Recv returns immediately « e.g.selL4 Recv blocks waiting for seL4_Call

* Prove Hoare triple over single kernel entry/exit « Kernel returns to different user!
... Caller is woken by selL4 Call later.

&

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Microkit-facing OS kernel interface

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

* Non-blocking cases: Straightforward Q * Blockir
* e.g.selL4 Recv returns immediately * e.g.se

* Prove Hoare triple over single kernel entry/exit « Kernel

g cases: Tricky =%

_4 Recv blocks waiting for seL4 Call

returns to different user!

... Caller is woken by selL4 Call later.

* Not handled by prior OS verification work
cf. CertiKOS ESOP’20 - blocks on IO, not another user

Verification Status of Time Protection and Microkit-based OS Services, Oct'24

© Rob Sison 2024, CC BY 4.0

O—=

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q |

UNSW

Microkit-facing OS kernel interface O =

library interface

seL4 Microkit Library .~ (APSys'23: Verified with SMT J

selL4 OS microkernel Abstract Model }’ « Verify Microkit-facing spec Q |

syscall interface

Challenge: kernel-perspective vs caller-perspective spec

» Non-blocking cases: Straightforward £Q » Blocking cases: Tricky %S

* e.g.sel4_Recv returns immediately « e.g.selL4 Recv blocks waiting for seL4_Call

* Prove Hoare triple over single kernel entry/exit « Kernel returns to different user!
... Caller is woken by selL4 Call later.

* Not handled by prior OS verification work
cf. CertiKOS ESOP’20 - blocks on IO, not another user

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

@selg \erification status

System built on selL4 Microkit-based OS (e.g. Lions 0S)
Client Client

(e.g. Linux VM) (e.g. IP stack)

Mlcroklt—based R servce 68 servie”
OS Services : (e.g.driver) 1! (e.g.virtualiser) i -

. e« 4, £ CpgapuussssssEnsEEnnEn?® CgamEmsssEEssEEmEnmmmn?
library interface

sel4 Microkit Library .~ { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘

syscall interface

seL4 OS microkernel _
Abstract Model . oo, Confidentiality

Time refinement L+ ?
Protection | Y o

. C implementation Confidentiality

incl. time protection

6 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

@selg \erification status

System built on selL4 Microkit-based OS (e.g. Lions 0S)
Client Client

(e.g. Linux VM) (e.g. IP stack)

Mlcroklt—based R servce 68 servie”
OS Services : (e.g.driver) 1! (e.g.virtualiser) i -

. e« 4, £ CpapeesssssssnnnEnEEn?® Cpapaemmmmmmnmnnnnmnnn?
library interface

sel4 Microkit Library .~ { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘

syscall interface

selL.4 OS microkernel

Abstract Model

6 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) Om'
Ethernet virtualisation architecture for w

&
LionsOS

—
e Copy.

library
interface

selL4 Microkit Library <:Z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) O'm'
Ethernet virtualisation architecture for w

®
: LionsOS
Untrusted : Trusted
+ (i.e. should be verified)

i S
>[4 Copy.

library
interface

seL4 Microkit Library <:Z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) O'm'
B
Ethernet virtualisation architecture for Cm,'“ v «

: LionsOS
Untrusted Trusted

(i.e. should be verified)

Verify inter-service/client Q ‘
communication protocols /

i S
> [l Copy

library
interface

seL4 Microkit Library <:Z APSys’23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) O-m'
B
Ethernet virtualisation architecture for Cm,'“ v «

Verify inter-service/client Q ‘
communication protocols /
LionsOS

Untrusted Trusted + Target: SPSC queues

(i.e. should be verified)

Client f<- -
P Stack [« iﬂ*—%ﬁ?_e.y;

library
interface

seL4 Microkit Library <:Z APSys’23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) O-m'
3
Ethernet virtualisation architecture for Cm,'“ v «

Verify inter-service/client Q ‘
communication protocols /
LionsOS

Untrusted | Trusted J Model checking (SPIN) « Target: SPSC queues
| « Deadlock freedom for aggressive optimisations J

(i.e. should be verified)

Client f<- -
P Stack [« iﬂ*—%ﬁ?_e.y;

library
interface

seL4 Microkit Library <:z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

Microkit-based OS services, drivers (+ devices) O-m'
S
Ethernet virtualisation architecture for Cm,'“ v «

Verify inter-service/client Q ‘
communication protocols /
LionsOS

Untrusted Trusted JModeI checking (SPIN) « Target: SPSC queues

(i.e. should be verified) Q Deductive verification « Deadlock freedom for aggressive optimisations J
(SMT-based) + other Correctness under weak memory models Q
NIC

Client f<- -
P Stack [« [&dﬁé.??.e.y;

library

interface . -
selL4 Microkit Library <:z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 g UNSW

SYDNEY

Microkit-based OS services, drivers (+ devices) O'm'
\S, |
Ethernet virtualisation architecture for m@ Cz verity Q / g

; LionsOS
Untrusted Trusted Model checking (SPIN) + Target: SPSC queues

(i.e. should be verified) Deductive verification * Deadlock freedom for aggressive optimisations
(SMT-based) + other Correctness under weak memory models

i S
>[4 Copy.

library
interface : e
seL4 Microkit Library <:Z APSys'23: Verified with SMT J
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CCBY 4.0 [UJ}QW

Microkit-based OS services, drivers (+ devices) O'm'
\S, |
Ethernet virtualisation architecture for m@ Cz verity Q / g

; LionsOS
Untrusted Trusted Model checking (SPIN) + Target: SPSC queues

(i.e. should be verified) Deductive verification * Deadlock freedom for aggressive optimisations
(SMT-based) + other Correctness under weak memory models

i S
IP Stack [« Copy -
— : E"—)“ A « Verify service-local properties Q / ‘

« Targets: drivers, components

library
interface : e
seL4 Microkit Library <:Z APSys'23: Verified with SMT J
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CCBY 4.0 [UJ}QW

Microkit-based OS services, drivers (+ devices) O-m'
\S, |
Ethernet virtualisation architecture for m/’ Cz verity Q / g

LionsOS
Untrusted

- « Target: SPSC queues
Trusted Model checking (SPIN) g 9

(i.e. should be verified) Deductive verification » Deadlock freedom for aggressive optimisations
(SMT-based) + other » Correctness under weak memory models

Client — |
; IP Stack L—> Copy -
EH‘ A “ Verify service-local properties Q / ‘

Deductive verification « Targets: drivers, components
(Pancake — Viper IL — SMT)

library
interface

seL4 Microkit Library <:Z APSys’23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 # UNSW

SYDNEY

Microkit-based OS services, drivers (+ devices) O-m'
\S |
Ethernet virtualisation architecture for m/’ Cz verity Q / g

LionsOS
Untrusted

- « Target: SPSC queues
Trusted Model checking (SPIN) g 9

(i.e. should be verified) Deductive verification » Deadlock freedom for aggressive optimisations
(SMT-based) + other » Correctness under weak memory models

Client T |
; IP Stack L—> - Copy -
E"—)“ A « Verify service-local properties Q / ‘

Deductive verification « Targets: drivers, components
(Pancake — Viper IL — SMT)

Q Interactive theorem proving (HOL4)

library
interface

seL4 Microkit Library <:z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 # UNSW

SYDNEY

Microkit-based OS services, drivers (+ devices) O-m'
\S |
Ethernet virtualisation architecture for m/’ Cz verity Q / g

LionsOS
Untrusted

- « Target: SPSC queues
Trusted Model checking (SPIN) g 9

(i.e. should be verified) Deductive verification » Deadlock freedom for aggressive optimisations
(SMT-based) + other » Correctness under weak memory models

Client T |
; IP Stack L—> - Copy -
E"—)“ A « Verify service-local properties Q / ‘

Deductive verification « Targets: drivers, components
(Pancake — Viper IL — SMT)

Q Interactive theorem proving (HOL4)

Functional correctness

library
interface

seL4 Microkit Library <:z APSys'23: Verified with SMT J

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 # UNSW

SYDNEY

Microkit-based OS services, drivers (+ devices) O'FH
\S |
Ethernet virtualisation architecture for mq Cz verity Q / g

LionsOS
Untrusted

- « Target: SPSC queues
Trusted Model checking (SPIN) g 9

(i.e. should be verified) Deductive verification » Deadlock freedom for aggressive optimisations
(SMT-based) + other » Correctness under weak memory models

Client T |
; IP Stack L—> - Copy -
EH‘ A « Verify service-local properties Q / ‘

Deductive verification « Targets: drivers, components
(Pancake — Viper IL — SMT)

 Functional correctness Q
& Interactive theorem proving (HOL4) * Requirements for device verification

seL4 Microkit Library <:Z APSys'23: Verified with SMT J

library
interface

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 # UNSW

SYDNEY

O =

Microkit-based OS services, drivers (+ devices)

Ethernet virtualisation architecture for mi! Cz verity Q / g

LionsOS
Untrusted Trusted Model checking (SPIN) » Target: SPSC queues

(i.e. should be verified) Deductive verification * Deadlock freedom for aggressive optimisations
(SMT-based) + other Correctness under weak memory models

software . hardware

Cz Verify Q /g

S
- W) Copy

Deductive verification « Targets: drivers, components
(Pancake — Viper IL — SMT) Functional correctness Q
. Interactive theorem proving (HOL4) Requirements for device verification
library
interface . o
selL4 Microkit Library <:Z APSys'23: Verified with SMT J
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 3 Us|>l|§EW

Microkit-based OS services, drivers (+ devices) O'm'
\S, |
Ethernet virtualisation architecture for m@ Cz verity Q / g

LionsOS
Untrusted : Trusted Model checking (SPIN) * Target: SPSC queues
(i.e. should be verified) Deductive verification » Deadlock freedom for aggressive optimisations
(SMT-based) + other Correctness under weak memory models

software , hardware

NI
TEX
RX

C

« Verify devices ﬁ

; .
IP Stack [#%>| @ Copy: |
Sy’ gl Cz \Verify Q / g
E Deductive verification Targets: drivers, components
(Pancake — Viper IL — SMT) Functional correctness Q
, Interactive theorem proving (HOL4) « Requirements for device verification
library
interface : e
selL4 Microkit Library <:Z APSys'23: Verified with SMT J
Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :] UNSW

@selg Verification status O=r

System built on selL4 Microkit-based OS (e.g. Lions 0S)
Client et e Verify inter-service/client Q / ‘

(e.g. Linux VM) (e.g. IP stack) communication protocols

WS EEEEEEEEEEEEENNNEN, WENNNENNNNNEEEEEEEEN . « Verlfy deV|CeS ﬁ

OS service :i OS service
UK \Verify service-local properties Q /‘

(e.g. driver) :: (e.g.virtualiser) =

--

Microkit-based
OS Services

library interface

syscall interface

Time
Protection

incl. time protection

8 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 B UNSW

SYDNEY

@selg Verification status O=r

System built on selL4 Microkit-based OS (e.g. Lions 0S)
Client et e Verify inter-service/client Q / ‘

(e.g. Linux VM) (e.g. IP stack) communication protocols

« Verify devices ﬁ
UOR \Verify service-local properties Q /‘

« Verify Microkit-facing spec Q / ‘

Microkit-based
OS Services

OS service :: 0OS service
(e.g. driver) :: (e.g.virtualiser) =

library interface

selL4 Microkit Library

syscall interface

selL.4 OS microkernel

Abstract Model

8 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :E: UNSW

@:cld

Microkit-based
OS Services

syscall interface

Verification status O =

Verify system-global properties ‘
compositionally

& QIR A WA

« Verify devices ﬁ
UOR \Verify service-local properties Q /‘

« Verify Microkit-facing spec Q / ‘

System built on selL4 Microkit-based OS (e.g. Lions 0S)

Client Client
(e.g. Linux VM) (e.g. IP stack)

OS service :i OS service
(e.g. driver) :: (e.g.virtualiser) =

library interface

selL4 Microkit Library

selL.4 OS microkernel

Abstract Model

8 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

SYDNEY

Verification status OT=

Cz Verify g.
compositionally
<X " 0/ =

<:z Verify %
<jz Verify Q |

Cz Verify Q / g

Time
Protection
incl. time protection
8 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 g UNSW

What is Time Protection?

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes /&?/®

microarchitectural state — this affects timing.

Cache

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

Cache

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UM&W

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

Memory

Slow...

Cache

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes ®
microarchitectural state — this affects timing.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

Memory

Fast!

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes ®
microarchitectural state — this affects timing.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection.

e But: Mere memory access changes
microarchitectural state — this affects timing.

Verification Status of Time Protection and Microkit-based OS Services, Oct'24

Memory

Cache

Slow...

S knows
T accessed
that part
of memory!

© Rob Sison 2024, CC BY 4.0

What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,
OSes can implement time protection: Memory

See EuroSys: [Ge et al. 2019]

e Partition off-core memory caches

L2 cache
(Partitionable)
L1 + other
on-core state -
(Flushable)
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USND§E\YN

What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,
OSes can implement time protection: Memory

See EuroSys: [Ge et al. 2019]

e Partition off-core memory caches

e [/ush on-core and non-architected state
and pad time on context switch

L2 cache
(Partitionable)
L1 + other
on-core state -
(Flushable)
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 U!Y\QW

What is Time Protection?

e (OSes typically implement memory protection. S
e But: Mere memory access changes ®
microarchitectural state — this affects timing. l

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable)

L1 + other
on-core state I]]
(Flushable)

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable) I:I:.

L1 + other 0S switch
on-core state from T 10 S
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN,SEW

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable) I:I:.
L1 + other

on-core state - S is running
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN,SEW

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

(Partitionable) I:I:.

L1 + other 0S switch
on-core state fomSto T
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN,SEW

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

e sel4 OS kernel’s enforcement of time protection: (Partitionable) I:I:.
 |mplemented, evaluated empirically on ARM, x86

See EuroSys: [Ge et al. 2019] L1 + other OS switch
on-core state - from Sto T
(Flushable)

“Flush”: Write fixed content; wait up to fixed time.

=

Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN,SEW

What is Time Protection?

e (OSes typically implement memory protection. S

e But: Mere memory access changes
microarchitectural state — this affects timing.

 Jo prevent these timing channels,

OSes can implement time protection:
See EuroSys: [Ge et al. 2019]

 [artition off-core memory caches

e [lush on-core and non-architected state

and pad time on context switch
L2 cache

 sel4 OS kernel’s enforcement of time protection: (Partitionable) I:I:.

 |mplemented, evaluated empirically on ARM, x86

. L1 + other .
See EuroSys: [Ge et al. 2019] 0S switch
, on-core state
e Ported to RISC-V with hardware support (Flushable) fromStoT
See arXiv preprint: [Buckley, Sison et al. 2023]
HW support: [Wistoff et al. 2023] “Flush”: Write fixed content; wait up to fixed time.
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 USN)SEW

@selg Verification status O=r

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

Verify inter-service/client
communication protocols

« Verify devices i
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘

1B

Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver) =: (e.g.virtualiser) =

library interface

syscall interface

Time
Protection
incl. time protection
10 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 :E: UNSW

@selg \erification status

<:3 Verify g
compositionally
X 0=

<:z Verify %
<:z Verify L) =

Cz Verify Q / g

Time
Protection
incl. time protection
10 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 g UNSW

Proving seL4 implements Time Protection (==

sel4 Kernel

Confidentiality

incl. time protection

lll

&

11 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

Proving seL4 implements Time Protection (==

selL4 Kernel <:z FM'23: Defined for OS kernels J

Confidentiality

incl. time protection

lll

&

11 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

Proving seL4 implements Time Protection (==

selL4 Kernel <:z FM'23: Defined for OS kernels /

Confidentiality [HE
incl. time protection ﬂ Verify for abstract model Q

ll

&

11 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

Proving seL4 implements Time Protection (==

sel4 Kernel

 Abstract model (ASpec) checks fouched addresses (TA) set

&

11 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

Proving seL4 implements Time Protection (==

sel4 Kernel

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)

oo

11 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Proving seL4 implements Time Protection (==

lll

selL4 Kernel : Noninterference <:z FM'23: Defined for OS kernels J
..................................... P——
InfoFlow 4

incl. time protection

TA

ﬂ Verify for abstract model Q

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]

11 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Proving seL4 implements Time Protection (==

S R i< { Fm23: Defined for OS kemels o
—4 .
InfoFlow

ﬂ Verify for abstract model Q

incl. time protection

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]

11 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Proving seL4 implements Time Protection (=

lll

Noninterference <:3 FM'23: Defined for OS kernels J

TA

ﬂ Verify for abstract model Q

incl. time protection

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

]

11 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Proving seL4 implements Time Protection (==
selL4 Kernel \ -SGCUntypohcy<:z FM'23: Defined for OS kernels J

....................................... P——
TA ASpec Alnvs 4 " Access 4 InfoFlow‘ ;

refinement + ? ﬁ ﬂ Verify for abstract model Q

/N ExecSpec

incl. time protection

ll

ll

1 Noninterference Refinement

% InfoFlowC

--

refinement

=X Update refinement Q /‘

TA”

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

(2B + 2C) Refinement: TA” ¢ TA' ¢ TA ? (via ExecSpec)

]

11 Verification Status of Time Protection and Microkit-based 0S Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Proving seL4 implements Time Protection (=
selL4 Kernel \ -SGCUntypohcyc:z FM'23: Defined for OS kernels J

....................................... P——
TA ASpec Alnvs 4 " Access 4 InfoFlow‘ ;

refinement + ? ﬁ ﬂ Verify for abstract model Q

/N ExecSpec

incl. time protection

ll

ll

1 Noninterference Refinement

% InfoFlowC

--

refinement

=X Update refinement Q /‘

TA”

 Abstract model (ASpec) checks fouched addresses (TA) set

+ (2A) Key Adpec property: TA € domain’s addresses (according to security policy)
« Also: Alnvs, Access, InfoFlow need repairs \ %

(2B + 2C) Refinement: TA” ¢ TA' ¢ TA ? (via ExecSpec)

« Modulo: Detail on addresses added by refinement to CSpec

]

11 Verification Status of Time Protection and Microkit-based OS Services, Oct’24 © Rob Sison 2024, CC BY 4.0 UNSW

YYYYYY

@selg Verification status O=r

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

Verify inter-service/client
communication protocols

« Verify devices é
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J

« Verify Microkit-facing spec Q / ‘
: « FM'23: Defined for OS kernels J

28 Verify for abstract model Q

1B

Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver) =: (e.g.virtualiser) =

library interface

syscall interface

TI me =% Update refinement Q / ‘
Protection
A& \/erify for C implementation Q / ‘
incl. time protection
12 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Q=ei4 Verification status

. < (FM'23: Defined for OS kernels J

28 Verify for abstract model Q

TI me =% Update refinement Q / ‘
Protection
A& \/erify for C implementation Q / ‘
incl. time protection
12 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

12

Verification status

. < (FM'23: Defined for OS kernels J

Time
Protection
incl. time protection
Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0

(Separation kernel
policy only)

Verification status

: < { FM'23: Defined for OS kernels J

28 Verify for abstract model Q

(Separation kernel
policy only)

TI me =X Update refinement Q / ‘
Protection
ZI6X \/erify for C implementation Q / ‘
incl. time protection Impleme_nt and verify fo_r ‘
cross-domain communications
12 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

O

@stlq Verification status ™ O

Verify system-global properties ‘
compositionally

L) =

System built on sel.4 Microkit-based OS (e.g. Lions 0s)

Client Client
(e.g. Linux VM) (e.g. IP stack)

1B Verify inter-service/client
communication protocols

« Verify devices g
UOR \Verify service-local properties Q /‘

sel4 Microkit Library . { APSys'23: Verified with SMT J
« Verify Microkit-facing spec Q / ‘
: « FM'23: Defined for OS kernels J

28 Verify for abstract model Q

=X Update refinement Q /‘
I \/erify for C implementation Q / ‘
Implement and verify for

cross-domain communications ‘

12 Verification Status of Time Protection and Microkit-based OS Services, Oct'24 © Rob Sison 2024, CC BY 4.0 UNSW

Microkit-based
OS Services

OS service :: OSservice :
(e.g.driver) =: (e.g.virtualiser) =

library interface

syscall interface

(Separation kernel
policy only)

Time
Protection

incl. time protection

13

R "'W"’"%ﬂ

uINE

LIy

HNHHNHW U

ﬂll

P o r/
AT w[ﬂl’[//
B.I‘ / [[;’

agﬁll”'lm;ap

Verification Status of Time Protection and Microkit-based OS Services, Oct'24

